美文网首页SQL
Hive SQL 窗口函数

Hive SQL 窗口函数

作者: cuteximi_1995 | 来源:发表于2020-01-31 16:46 被阅读0次

本文首发:大数据每日哔哔-Hive SQL 窗口函数

Hive 的窗口函数

在 SQL 中有一类函数叫做聚合函数,例如 sum()、avg()、max()、min() 等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的。但是,有时候我们既要显示聚集前的数据,又要显示聚集后的数据,此时我们便引入了窗口函数。窗口函数主要用于 OLAP 数据分析。

在深入研究Over字句之前,一定要注意:在SQL处理中,窗口函数都是最后一步执行,而且仅位于Order by子句之前。

窗口函数 描述
LAG() LAG()窗口函数返回分区中当前行之前行(可以指定第几行)的值。 如果没有行,则返回null。
LEAD() LEAD()窗口函数返回分区中当前行后面行(可以指定第几行)的值。 如果没有行,则返回null。
FIRST_VALUE FIRST_VALUE窗口函数返回相对于窗口中第一行的指定列的值。
LAST_VALUE LAST_VALUE窗口函数返回相对于窗口中最后一行的指定列的值。

LAG 和 LEAD 的用法:

LAG | LEAD
( <col>, <line_num>, <DEFAULT> )
OVER ( [ PARTITION BY ] [ ORDER BY ] )

FIRST_VALUE 和 LAST_VALUE 的用法:

FIRST_VALUE | LAST_VALUE
( <col>,<ignore nulls as boolean> ) OVER
( [ PARTITION BY ] [ ORDER BY ][ window_clause ] )

下面举个例子,数据集如下:

hive> select * from tmp_pv;
OK
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2019-02-10  1
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2019-02-11  5
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2019-02-12  7
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2019-02-13  3
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2019-02-14  2
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2019-02-15  4
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2019-02-16  4
993BD7AD-3B62-BA0C-15AE-A14B85921889    2019-02-10  2
993BD7AD-3B62-BA0C-15AE-A14B85921889    2019-02-11  9
993BD7AD-3B62-BA0C-15AE-A14B85921889    2019-02-12  3
993BD7AD-3B62-BA0C-15AE-A14B85921889    2019-02-13  10
993BD7AD-3B62-BA0C-15AE-A14B85921889    2019-02-14  1
993BD7AD-3B62-BA0C-15AE-A14B85921889    2019-02-15  8
993BD7AD-3B62-BA0C-15AE-A14B85921889    2019-02-16  2
Time taken: 0.102 seconds, Fetched: 14 row(s)

<a name="Y1tyI"></a>

LAG(col,n,default)

与 partitioned by 结合使用,返回当前分区中,当前行之前的第 n 行对应的值。如果没有则默认换回 null。第一个参数为列名,第二个参数为当前行之前第n行(可选,默认为1),第三个参数为缺失时默认值(当前行之前第n行为NULL没有时,返回该默认值,如不指定,则为NULL)。

为了比较每个用户浏览次数与前一天的浏览次数进行比较,查询返回当前浏览次数以及前一天的浏览数量。由于在2019-02-10之前没有浏览行为,前一天的浏览次数设置为0(不设置默认为NULL)。

hive> select gid, dt, pv, lag(pv, 1, 0) over (partition by gid order by dt) as pre_pv from tmp_pv;
 
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-10  1   0
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-11  5   1
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-12  7   5
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-13  3   7
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-14  2   3
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-15  4   2
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-16  4   4
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-10  2   0
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-11  9   2
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-12  3   9
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-13  10  3
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-14  1   10
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-15  8   1
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-16  2   8
Time taken: 11.783 seconds, Fetched: 14 row(s)

<a name="V4ogf"></a>

LEAD(col,n,default)

与 LAG 函数相反。

<a name="CA4fi"></a>

FIRST_VALUE(col,布尔值)

第一个参数是需要第一个值的列,第二个(可选)参数必须是默认为false的布尔值。如果设置为true,则跳过空值。

hive> select gid,dt,pv,first_value(pv,true) over(partition by gid order by dt) as first_value from temp_pv; 
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-10  1   1
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-11  5   1
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-12  7   1
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-13  3   1
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-14  2   1
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-15  4   1
0006D2BC-4DF9-4C0B-83AD-0183789E78D4    2017-02-16  4   1
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-10  2   2
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-11  9   2
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-12  3   2
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-13  10  2
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-14  1   2
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-15  8   2
993BD7AD-3B62-BA0C-15AE-A14B85921889    2017-02-16  2   2
Time taken: 9.862 seconds, Fetched: 14 row(s)

<a name="2f562"></a>

LAST_VALUE(col,布尔值)

与 FIRST_VALUE() 函数相反,这里就不进行演示了。

<a name="cDqav"></a>

over子句

官方 OVER子句 包括几个部分:

  • 聚合函数(count, sum, min, max, avg)
  • OVER 子句
  • PARTITION BY 子句
  • ORDER BY 子句
  • WINDOW 子句

结合具体的业务场景,SQL 语句如下:<br />

---1)201504月份的销售额
select sum(amount) as total_amt
from order_window 
where substr(order_date,1,7)='2015-04'
;
---2)201504月份的订单明细与销售额
select user_name, order_date, amount
      ,sum(amount) over() as total_amt
from order_window
where substr(order_date,1,7)='2015-04'
;
---3)客户的订单明细与月购买金额
select user_name, order_date, amount
      ,sum(amount) over (partition by month(order_date)) month_amt
from order_window
;
---4)客户的订单明细与累计购买金额
select user_name, order_date, amount
      ,sum(amount) over (partition by month(order_date) order by order_date) month_add_amt
from order_window
;
---5)不同窗口的销售额
select 
     user_name
    ,order_date
    ,amount
    ,sum(amount) over() as sample1 --所有行相加
    ,sum(amount) over(partition by user_name) as sample2 --按name分组,组内数据相加
    ,sum(amount) over(partition by user_name order by order_date) as sample3 --按name分组,组内数据累加
    ,sum(amount) over(partition by user_name order by order_date rows between UNBOUNDED PRECEDING and current row) as sample4 --和sample3一样,由起点到当前行的聚合
    ,sum(amount) over(partition by user_name order by order_date rows between 1 PRECEDING and current row) as sample5 --当前行和前面一行做聚合
    ,sum(amount) over(partition by user_name order by order_date rows between 1 PRECEDING and 1 FOLLOWING) as sample6 --当前行和前边一行及后面一行
    ,sum(amount) over(partition by user_name order by order_date rows between current row and UNBOUNDED FOLLOWING) as sample7 --当前行及后面所有行
from order_window
;

<a name="sWJSK"></a>

windows子句

带有窗口规范的OVER子句。窗口可以在WINDOW子句中单独定义。窗口规范支持如下格式:<br />

关键字 说明
PRECEDING 表示当前行之前的行
UNBOUNDED PRECEDING 表示当前行之前无边界行,即第一行
num PRECEDING 表示当前行之前第num行
CURRENT ROW 表示当前行
FOLLOWING 表示当前行后面的行
UNBOUNDED FOLLOWING 表示当前行后面无边界行,即最后一行
num FOLLOWING 表示当前行后面第num行

<br />当缺少WINDOW子句并指定使用ORDER BY时,窗口规范默认为RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,即从第一行到当前行。<br />当缺少ORDER BY和WINDOW子句时,窗口规范默认为ROW BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING,即第一行到最后一行。<br />

<a name="fn1nr"></a>

参考

相关文章

  • Hive SQL 窗口函数

    本文首发:大数据每日哔哔-Hive SQL 窗口函数 Hive 的窗口函数 在 SQL 中有一类函数叫做聚合函数,...

  • Hive sql及窗口函数

    hive函数: 1、根据指定条件返回结果:case when then else end as 2、基本类型转换:...

  • hive窗口函数使用

    hive窗口函数基本面试面sql必考项目,这里画一下重点猴,那现在就操练起来~窗口函数格式: 窗口说明:n PRE...

  • SQL分析函数,看这一篇就够了

    数据库SQL分析函数/窗口函数专题,值得收藏!几乎涵盖所有数据库,例如:Oracle、Hive、MySQL8.0、...

  • hive窗口函数总结

    一:前言 根据官网的介绍,hive推出的窗口函数功能是对hive sql的功能增强,确实目前用于离线数据分析逻辑日...

  • hive窗口函数盘点

    在支持窗口函数里的sql里,善用窗口函数,能降低sql编写复杂度并提高sql执行效率。 窗口函数 function...

  • Pandas实现Hive中的窗口函数

    1、Hive窗口函数 我们先来介绍一下Hive中几个常见的窗口函数,row_number(),lag()和lead...

  • Spark SQL 开窗函数

    谈到 SQL 的开窗函数,要说到HIVE了,因为这个是HIVE支持的特性,但是在Spark SQL中支持HIVE...

  • Hive常用交互命令

    1 Hive 常用交互命令 1.“-e”不进入 hive 的交互窗口执行 sql 语句bin/hive -e "s...

  • Hive sql常见操作

    基本sql操作 hive表操作 分区操作 Hive内置函数 (1)数学函数 常用的数学函数都有:round、flo...

网友评论

    本文标题:Hive SQL 窗口函数

    本文链接:https://www.haomeiwen.com/subject/mwwgthtx.html