(转载自科学松鼠会 溯鹰)
最近是观赏行星的好时节。找一个晴朗的傍晚,随着日落西山、夜幕初降,你很容易在西方天空找到一盏高悬夜空的“明灯”。它的亮度,不输夜幕下初上的华灯,甚至偶尔被误认为正在降落的飞机。在老辈的口中,它被叫作“长庚星”。最近的这段时间里,它总是会在暮光中出现,暗示长夜将至。
随着夜入深境,长庚星徐徐落下,另一盏“明灯”伴随银河的旋臂从东方悄然升起[1],而后它将横贯全天,直至拂晓的晨光驱走黑夜。每年它都会在黄道十二宫之间徐徐巡礼,一年一个星座,用十二周年的轮回,俯瞰人世的变迁。
在神话里,它们分别被称为维纳斯与朱庇特。她是爱与美的女神;而他,则端坐奥林匹亚之巅。
在科学上,它们被叫做金星与木星。“她”是离我们最近的邻居;而“他”,则是太阳系最宏伟的巨人行星。
在神话里,神总是要染指凡界的;在科学上,这两颗行星也在影响着地球。
大部分时候,金星和木星是夜空中最明亮的星。虽然与地球相距甚远,它们共同的引力却对地球环境产生着周期性影响。图中最明亮的两颗星,下面是金星,上面是木星,摄于2015年11月。图片来源:王卓骁 & 夜空中国
染指凡界的天神
大部分时候,金星和木星都闪耀着夜空中除月亮外最明亮的光辉,它们是那“夜空中最亮的星”。最近这段时间,金星离我们大概2亿公里,比我们更靠近太阳;而木星距离我们则有6.6亿公里,远在火星的轨道之外。两位天神虽然相隔甚远,却联起手来对地球上的环境变化横插了一道。
天文学家告诉我们:地球的轨道是一个接近完美的圆形。但每隔40.5万年,金星和木星的共同引力作用,会把地球轨道稍微拉长一些,使它更像一个椭圆。虽然拉长量大概只有5%,但对地表环境来说可就大不一样了。地球上的气候变化与太阳能的输入量密切相关。轨道拉长拉短,离太阳是远是近,直接决定着每年到达地表的太阳能总量。太阳爸爸每年给的“预算”多一些,地球的“态度”就会热一些;反之“预算”少一些,“态度”就冷一些。地球表面的生命们,偏偏对这颗星球的晴雨冷暖非常敏感。每遭遇一次变动,它们都免不了要生死明灭地闹腾那么几回。甚至稍不注意,还会上演一出灭绝大戏给你看。
故事很美好,但事实果真如此么?天地之隔就是时空之隔,这上亿公里之遥、40万年之久的尺度,想靠一堆理论演算就把这件事板上钉钉,毕竟太虚了点儿。要证明推论属实,必须得拿出证据。而咱们平时生活中的时空常识,显然无法处理这么巨大的问题。想找证据,就必须翻阅地球的历史,用地球的尺度来一窥端倪。
这份地球的编年史,叫做地层。
地球的历史,包括地球上环境的变迁,都记录在这样的地层之中了。图片来源:Margaret W. Carruthers
记录真相的史书
一段连续的地层代表着一段时期的地球历史,且地层本身是当时地表环境沉积的产物。这两方面告诉我们:人们可以从地层中详细地读出“什么时间”、“发生了什么事”。
给你一套地层,首先得知道它的年龄。好在有些地层含有火山喷发的碎屑物,这些火山碎屑里往往会掺杂一些锆石。锆石内部封存着一套铀裂变系统,和今天人类用于制造原子弹的原理一模一样。利用卢瑟福-索迪定律对裂变方程进行一些简单计算,可以得出锆石形成的时间。
但只有锆石是不够的,因为地层中每个单层的锆石年龄,只代表该层的形成时间。一套沉积层序动辄由几十乃至上百个单层组成,且不说锆石测年的误差本身在万年到百万年的量级,对整个层序形成的时间跨度无法有效约束,更棘手的是,很多地层压根就不含能够用于测年的锆石。想要详细解读这些地层中记录的历史,还必须找到一把标尺,能够在其中标明时间流逝的长短。这个时候,就要有请另一种测年方法出马了——那就是古地磁测量。
我们知道地球的南北磁极会不停摆动,有时地磁南极会摆到地理北极,有时则刚好相反。在来回摆动的周期中,岩层也在潜移默化地形成,这个过程中免不了会有一些含铁矿物(比如磁铁矿)析出。这些天然小磁针在结晶时,会把自己的方向排列成当时磁场的方向,就此保存在地层之中。
如果我们知道地球古代磁场方向随时间变化的历史,地层里记录的地磁方向就能够拿来与之比对,从而起到时间标尺的作用。谁又知道地球磁场方向变化的历史呢?大洋地壳知道。大洋地壳在洋中脊一点点增生、然后向两侧扩张漂移,它就相当于一条“磁带”,随时间连续记录了历史上地球磁场方向的变化。
当人们拿地层中测出的古地磁方向与大洋地壳中记录的古地磁方向进行对比,就可以知道一段待测地层沉积于何时、这个区间一共持续多久了。
肯特教授和他测定了年代跨度的部分地层岩芯样本。这些地层里记录的历史表明,早在恐龙时代,金星和木星就对地球环境产生着跟今天一样的周期性影响。图片来源:Nick Romanenko/Rutgers University
岩层里的环境变迁
本月初,美国罗格斯大学的丹尼斯·肯特(Dennis Kent)教授及其团队在《美国国家科学院院刊》(PNAS)上发表论文称,他们对美国西南部一个史前大湖的沉积层进行了一次岩浆锆石与古地磁的联合测量,精确地测算了这套地层的年代跨度。
这套地层的年代是三叠纪,即侏罗纪之前的纪元。测出一套史前湖泊沉积物地层的精细年限有什么用呢?目的是要在一个精确的年龄记录框架下,分析其中所记录的环境变迁。地层由当时的沉积物一层层堆积而成,而沉积物的成分、粒度、沉积构造等,则精确反映了每一层沉积时的环境。把时间意义和事件意义联合起来,就能知道“从什么时间到什么时间”、“环境发生了怎样的变化”。
通过分析每一套地层的沉积特征,肯特教授等人发现,当时的环境变迁呈现出非常有规律的变化行为。从湿润到干旱,从干旱再到湿润,呈现着以40.5万年为周期的旋回性变化。40.5万年,这个数字是不是很熟悉?没错,恰恰就是金星木星的联合引力作用对地球轨道的干扰周期。
其实,很早就有人把天文学的这一重要推论,与古地磁地层年代学记录的时间表匹配起来,并把配套的这套年代记录叫作“天文年代地层学磁极性年代计”(APTS)。但是,其应用范围仅局限在距今5000万年之内。这主要是受地层测年精确度制约。一般来说,距今越近,地层记录就越精细。
肯特教授这一成果的重要意义在于,他们找到了一套更古老的地层记录,能够对其进行精细的年代学校正,发现其中记录的环境变化旋回周期同样是40.5万年。这就说明,木星和金星的联合引力作用,并非最近才开始眷顾地球。早在2.1亿年前的三叠纪,它们就对地球环境施加着同样的影响。
恐龙们不会知道,夜空中最亮的星,如何实实在在影响到了地球上的环境变化。图片来源:吴奈 & 夜空中国
回到巨龙纪元
三叠纪是什么概念?是恐龙刚开始繁盛的时期。此时的生物圈刚刚经历过二叠纪末惨烈的物种大灭绝,进入了一个欣欣向荣的时代。今天闪耀在夜空中的金星与木星,也同样映照在当时恐龙的双眼里。但这些史前巨兽的大脑中大概没有维纳斯,也没有朱庇特;没有浓云层,也没有大红斑[2]。对它们来说,夜空中最亮的星只不过是构不成任何威胁的两团小光斑而已。光斑是什么?它们能吃么?
但这两团光斑却对傻乎乎的恐龙构成了实实在在的影响。它们永远不可能知道,“天神”的引力,如同一根无声的琴弦,悄悄拨动着地球的公转。潜移默化之间,雨季可能慢慢变得更丰沛了,旱季也会渐渐变得更灼热了;冰期的降温更加严峻,季节则变得突兀反常。多变的气候,最终在泛大陆上竖起一座座无形的环境壁垒,对于高度依赖环境的恐龙来说,便是一道道无法逾越的无形长城,阻碍着它们的迁徙和基因的传递[3]。
“天神”用自己的方式影响着“凡界”,只不过爬在地上的恐龙们不可能知道这一点。恐龙们更不知道的是,在亿万年后,当一颗陨星毁灭了中生代的生态,从它们手中接过地球统治接力棒的哺乳动物,最终把探测器发射到夜空中这些“不能吃”的小光斑上。
是因为后来的小生灵比恐龙多了一双翅膀吗?不,长出双翼的反而是恐龙的后代鸟类。小生灵们只是比它们多了一个不会体现在外表上的物质——智慧。
正是因为有了智慧,人类可以知道是什么导致了恐龙的灭绝,可以派遣使者拜访维纳斯与朱庇特,也可以知道这两颗行星在上亿公里之外如何影响着地球上的环境变迁。
注释:
[1] 以上描述的对应时间为2018年5月,由于行星和地球都在绕太阳公转,金星和木星所处的方位和升落时间会有变化。
[2] 浓厚的云层和大红斑,分别是金星和木星上最显著的特征。
[3] 在早期恐龙生活的三叠纪,地球所有大陆合众为一,被称为泛大陆(Pangea)。
网友评论