接着上一节 《Prometheus + Grafana (1) 监控 》,我们继续探讨 Prometheus + Grafana 的复杂应用
实现目标
这节我们的目标是搭建一个多维度监控微服务的可视化平台,包括Docker容器监控、MySQL监控、Redis监控和微服务JVM监控等,并且在必要的情况下可以发送预警邮件。
主要用到的组件有Prometheus、Grafana、alertmanager、node_exporter、mysql_exporter、redis_exporter、cadvisor。各自作用如下所示:
- Prometheus:获取、存储监控数据,供第三方查询;
- Grafana:提供Web页面,从Prometheus获取监控数据可视化展示;
- alertmanager:定义预警规则,发送预警信息;
- node_exporter:收集微服务端点监控数据(与Prometheus一套);
- mysql_exporter:收集MySQL数据库监控数据;
- redis_exporter:收集Redis监控数据;
- cadvisor:收集Docker容器监控数据。
使用docker安装 Grafana、Prometheus及监控服务
上一节我们是直接使用的Windows下的安装软件安装Grafana和Prometheus,但是在我们的日常生产=环境中多是用的Linux,所以我们选择了方便的docker进行安装部署。
- 在自己的挂载目录下创建 prometheus.yml
#创建Prometheus挂载目录
mkdir -p /dimples/volumes/prometheus
#在该目录下创建Prometheus配置文件
vim /dimples/volumes/prometheus/prometheus.yml
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['localhost:9090']
- 在自己的挂载目录下创建 alertmanager.yml
global:
smtp_smarthost: 'smtp.qq.com:465'
smtp_from: '1126834403@qq.com'
smtp_auth_username: '1126834403@qq.com'
# qq邮箱获取的授权码
smtp_auth_password: 'xxxxxxxxxxxxxxxxx'
smtp_require_tls: false
#templates:
# - '/alertmanager/template/*.tmpl'
route:
group_by: ['alertname']
group_wait: 10s
group_interval: 5m
repeat_interval: 5m
receiver: 'default-receiver'
receivers:
- name: 'default-receiver'
email_configs:
- to: '2119713895@qq.com'
send_resolved: true
- 创建创建 docker-compose.yml 文件
version: '3'
services:
prometheus:
image: prom/prometheus
container_name: prometheus
volumes:
- /dimples/volumes/prometheus/:/etc/prometheus/
ports:
- 9090:9090
restart: on-failure
command:
- '--web.enable-lifecycle '
grafana:
image: grafana/grafana
container_name: grafana
ports:
- 3000:3000
node_exporter:
image: prom/node-exporter
container_name: node_exporter
ports:
- 9100:9100
redis_exporter:
image: oliver006/redis_exporter
container_name: redis_exporter
command:
- "--redis.addr=redis://127.0.0.1:6379"
- "--redis.password 'ZHONG9602.class'" # 认证密码,如果没有密码,该参数不需要
ports:
- 9101:9121
restart: on-failure
mysql_exporter:
image: prom/mysqld-exporter
container_name: mysql_exporter
environment:
- DATA_SOURCE_NAME=root:123456@(127.0.0.1:3306)/
ports:
- 9102:9104
cadvisor:
image: google/cadvisor
container_name: cadvisor
volumes:
- /:/rootfs:ro
- /var/run:/var/run:rw
- /sys:/sys:ro
- /var/lib/docker/:/var/lib/docker:ro
ports:
- 9103:8080
alertmanager:
image: prom/alertmanager
container_name: alertmanager
volumes:
- /dimples/volumes/alertmanager/alertmanager.yml:/etc/alertmanager/alertmanager.yml
ports:
- 9104:9093
使用 docker-compose up -d 启动服务
image# 不使用docker-compose安装
docker run -d --name prometheus -p 9090:9090 -v /dimples/volumes/prometheus/:/etc/prometheus/ prom/prometheus --config.file=/etc/prometheus/prometheus.yml --web.enable-lifecycle
docker run -d --name redis_exporter -p 9101:9121 oliver006/redis_exporter --redis.addr redis://127.0.0.1:6379 --redis.password 'ZHONG9602.class'
- 测试是否监控到数据
如上图所示,我们刚刚定义的两个警告规则已经成功加载
接着访问 http://127.0.0.1:9090/targets 观察在Prometheus配置文件里定义的各个job的状态:
image可以看的都是监控的UP状态。
还可以点击上面这个页面的各个 Endpoint 的链接,如果页面显示出了收集的数据,则说明各个Endpoint已经成功采集到了数据,以mysql_exporter为例子,访问
http://127.0.0.1:9102/metrics
访问http://127.0.0.1:9104/#/status看看我们在alertmanager.yml配置的规则是否已经生效:
image配置Java程序监控
在上面的配置中我们简单的将Prometheus采集的对于自身的数据通过Grafana进行了展示,而我们的核心是通过Prometheus去采集Java应用的数据,这就需要针对前面提到的通过Prometheus的pull模式定时去拉取SpringBoot通过Actuator暴露的Micrometer采集的监控指标
- 首先需要的做的是完成Java应用的Micrometer集成,访问actuator/prometheus或者/prometheus能够正常的返回Micrometer采集的数据指标(这一步操作在上节中已经很详细的介绍了,此处不再赘述)
- 进入部署Prometheus的文件目录,打prometheus.yml进行拉取节点的配置,在配置文件的scrape_configs节点添加针对java的配置
修改 prometheus.yml 配置所有监控服务
在上面启动的 prometheus,我们没有配置任何的监控,所以我们要修改 prometheus.yml 文件,使其监控我们想监控的数据源,具体的修改内容如下图所示
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'prometheus'
static_configs:
- targets: ['127.0.0.1:9090']
- job_name: 'node_exporter'
static_configs:
- targets: ['127.0.0.1:9100']
labels:
instance: 'node_exporter'
- job_name: 'redis_exporter'
static_configs:
- targets: ['127.0.0.1:9101']
labels:
instance: 'redis_exporter'
- job_name: 'mysql_exporter'
static_configs:
- targets: ['127.0.0.1:9102']
labels:
instance: 'mysql_exporter'
- job_name: 'cadvisor'
static_configs:
- targets: ['127.0.0.1:9103']
labels:
instance: 'cadvisor'
- job_name: 'server-demo-actuator'
metrics_path: '/actuator/prometheus'
scrape_interval: 5s
static_configs:
- targets: ['127.0.0.1:8001']
labels:
instance: 'server-demo'
rule_files:
- 'memory_over.yml'
- 'server_down.yml'
alerting:
alertmanagers:
- static_configs:
- targets: ["127.0.0.1:9104"]
PS: 每个服务的targets都是一个数组,可以收集多个服务器下的exporter提供的监控数据。
接着创建上面提到的两个监控规则 memory_over.yml 和 server_down.yml
# 创建 memory_over.yml
vim /dimples/volumes/prometheus/memory_over.yml
内容如下:
groups:
- name: server_down
rules:
- alert: InstanceDown
expr: up == 0
for: 20s
labels:
user: Dimples
annotations:
summary: "Instance {{ $labels.instance }} down"
description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 20 s."
当某个节点的内存使用率大于80%,并且持续时间大于20秒后,触发监控预警。
接着创建 server_down.yml:
# server_down.yml
vim /dimples/volumes/prometheus/server_down.yml
内容如下:
groups:
- name: server_down
rules:
- alert: InstanceDown
expr: up == 0
for: 20s
labels:
user: Dimples
annotations:
summary: "Instance {{ $labels.instance }} down"
description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 20 s."
当某个节点宕机(up==0表示宕机,1表示正常运行)超过20秒后,则触发监控。
在 Grafana 中使用
使用浏览器访问 http://127.0.0.1:9090,用户名密码为admin/admin,首次登录需要修改密码。
第一步:首先需要添加数据源,上一节中已经详细介绍过了,此处不再赘述,结果如图:
image添加数据源成功后,我们就可以添加监控面板了,同样的,我们可以去Grafana官方市场选择别人配置好的模板:https://grafana.com/grafana/dashboards
此处我收集了几个好用的监控模板,已经上传到微云网盘,只需要下载然后导入即可( 链接:https://share.weiyun.com/XDzICKtf )
下面以 MySql 监控为例,演示导入模板:
image点击 Upload JSON file 后,选择对应的文件,成功后会自动弹出一下界面,然后点击Import
image image image image image额外补充
alertmanager 丰富的预警配置
groups:
- name: example #定义规则组
rules:
- alert: InstanceDown #定义报警名称
expr: up == 0 #Promql语句,触发规则
for: 1m # 一分钟
labels: #标签定义报警的级别和主机
name: instance
severity: Critical
annotations: #注解
summary: " {{ $labels.appname }}" #报警摘要,取报警信息的appname名称
description: " 服务停止运行 " #报警信息
value: "{{ $value }}%" # 当前报警状态值
- name: Host
rules:
- alert: HostMemory Usage
expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 80
for: 1m
labels:
name: Memory
severity: Warning
annotations:
summary: " {{ $labels.appname }} "
description: "宿主机内存使用率超过80%."
value: "{{ $value }}"
- alert: HostCPU Usage
expr: sum(avg without (cpu)(irate(node_cpu_seconds_total{mode!='idle'}[5m]))) by (instance,appname) > 0.65
for: 1m
labels:
name: CPU
severity: Warning
annotations:
summary: " {{ $labels.appname }} "
description: "宿主机CPU使用率超过65%."
value: "{{ $value }}"
- alert: HostLoad
expr: node_load5 > 4
for: 1m
labels:
name: Load
severity: Warning
annotations:
summary: "{{ $labels.appname }} "
description: " 主机负载5分钟超过4."
value: "{{ $value }}"
- alert: HostFilesystem Usage
expr: 1-(node_filesystem_free_bytes / node_filesystem_size_bytes) > 0.8
for: 1m
labels:
name: Disk
severity: Warning
annotations:
summary: " {{ $labels.appname }} "
description: " 宿主机 [ {{ $labels.mountpoint }} ]分区使用超过80%."
value: "{{ $value }}%"
- alert: HostDiskio
expr: irate(node_disk_writes_completed_total{job=~"Host"}[1m]) > 10
for: 1m
labels:
name: Diskio
severity: Warning
annotations:
summary: " {{ $labels.appname }} "
description: " 宿主机 [{{ $labels.device }}]磁盘1分钟平均写入IO负载较高."
value: "{{ $value }}iops"
- alert: Network_receive
expr: irate(node_network_receive_bytes_total{device!~"lo|bond[0-9]|cbr[0-9]|veth.*|virbr.*|ovs-system"}[5m]) / 1048576 > 3
for: 1m
labels:
name: Network_receive
severity: Warning
annotations:
summary: " {{ $labels.appname }} "
description: " 宿主机 [{{ $labels.device }}] 网卡5分钟平均接收流量超过3Mbps."
value: "{{ $value }}3Mbps"
- alert: Network_transmit
expr: irate(node_network_transmit_bytes_total{device!~"lo|bond[0-9]|cbr[0-9]|veth.*|virbr.*|ovs-system"}[5m]) / 1048576 > 3
for: 1m
labels:
name: Network_transmit
severity: Warning
annotations:
summary: " {{ $labels.appname }} "
description: " 宿主机 [{{ $labels.device }}] 网卡5分钟内平均发送流量超过3Mbps."
value: "{{ $value }}3Mbps"
- name: Container
rules:
- alert: ContainerCPU Usage
expr: (sum by(name,instance) (rate(container_cpu_usage_seconds_total{image!=""}[5m]))*100) > 60
for: 1m
labels:
name: CPU
severity: Warning
annotations:
summary: "{{ $labels.name }} "
description: " 容器CPU使用超过60%."
value: "{{ $value }}%"
- alert: ContainerMem Usage
# expr: (container_memory_usage_bytes - container_memory_cache) / container_spec_memory_limit_bytes * 100 > 10
expr: container_memory_usage_bytes{name=~".+"} / 1048576 > 1024
for: 1m
labels:
name: Memory
severity: Warning
annotations:
summary: "{{ $labels.name }} "
description: " 容器内存使用超过1GB."
value: "{{ $value }}G"
预警除了使用邮件外,也可以使用企业微信接收,可以参考:https://songjiayang.gitbooks.io/prometheus/content/alertmanager/wechat.html
网友评论