现有一堆数据,我需要按时间进行分组,以便前端视图呈现
[
{"date":"2017-12-22","start_time":"10:00:00","end_time":"10:00:00","status":"Performance Time"},
{"date":"2017-12-22","start_time":"10:40:00","end_time":"10:40:00","status":"Performance Time"},
{"date":"2017-12-23","start_time":"10:00:00","end_time":"10:00:00","status":"Performance Time"},
{"date":"2017-12-23","start_time":"10:40:00","end_time":"10:40:00","status":"Performance Time"}
]
需转化为如下
[
{
date: '2017-12-22',
data: [
{
date: '2017-12-22',
start_time: '10:00:00',
end_time: '10:00:00',
status: 'Performance Time'
},
{
date: '2017-12-22',
start_time: '10:40:00',
end_time: '10:40:00',
status: 'Performance Time'
}
]
},
{
date: '2017-12-23',
data: [
{
date: '2017-12-23',
start_time: '10:00:00',
end_time: '10:00:00',
status: 'Performance Time'
},
{
date: '2017-12-23',
start_time: '10:40:00',
end_time: '10:40:00',
status: 'Performance Time'
}
]
}
]
1.原始方法,网络一大堆
var map = {},
nList = []
//遍历原始数组
for (var i = 0; i < arr.length; i++) {
var item = arr[i]
//如果map没有则在新nList中添加
if (!map[item.date]) {
nList.push({
date: item.date,
data: [item]
})
map[item.date] = item
} else {
//遍历nList
for (var j = 0; j < nList.length; j++) {
var nItem = nList[j]、
//如查找到date符合则添加
if (nItem.date == item.date) {
nItem.data.push(item)
//跳出循环
break
}
}
}
}
运行效率:遍历1000个约3ms,总觉得不优雅,而且没用到ES5的特性,于是决定自己优化一下!
2.使用ES5特性
将for替换为forEach和every
let map = {},
nList = []
arr.forEach((item) => {
if (!map[item.date]) {
nList.push({
date: item.date,
data: [item]
})
map[item.date] = item
} else {
//因为forEach不支持break,所以使用every实现
nList.every((nItem) => {
if (nItem.date === item.date) {
nItem.data.push(item)
return false
}
return true
})
}
})
性能优化50%,约1.5ms!
3.性能优化实践
因为我的数组中的date是按顺序排列,而且没有重复,这样可以考虑去除第二个循环
let map = {},
nList = []
//设置初始key为0
let _nkey = 0
arr.forEach((item, index) => {
if (index === 0) {
nList.push({
date: item.date,
data: [item]
})
} else {
let oItem = arr[index - 1]
//和前一个date一致则在当前添加,否则添加至nList
if (item.date === oItem.date) {
nList[_nkey]['data'].push(item)
} else {
nList.push({
date: item.date,
data: [item]
})
_nkey ++
}
}
})
效率再次优化50%,约1ms!
网友评论