美文网首页
大数据开发之Hive案例篇7- 笛卡尔积优化一例

大数据开发之Hive案例篇7- 笛卡尔积优化一例

作者: 只是甲 | 来源:发表于2023-05-24 09:38 被阅读0次

    一. 问题描述

    今天遇到一个问题,一个大表join 一个拉链表,获取对应的数据

    大表t_big,数量2kw左右
    小表t_lalian,是拉链表,数量5k左右

    两个表关联条件是

    t_big.tx_date >= t_lalian.start_date and t_big.tx_date <  t_lalian.end_date
    

    这种非等值连接,不能写在on子句,只能写在where子句后面,那么此时的问题就是连个表的关联变成笛卡尔积了,产生的数据量太大了,而且笛卡尔积是全局的,所以只有一个reduce,执行进程上看,reduce进度一直卡在99%不动。

    2023-05-18 12:06:01,292 Stage-1 map = 100%,  reduce = 87%, Cumulative CPU 2055.94 sec
    2023-05-18 12:06:07,496 Stage-1 map = 100%,  reduce = 88%, Cumulative CPU 2063.82 sec
    2023-05-18 12:06:12,665 Stage-1 map = 100%,  reduce = 89%, Cumulative CPU 2071.49 sec
    2023-05-18 12:06:25,072 Stage-1 map = 100%,  reduce = 90%, Cumulative CPU 2086.6 sec
    2023-05-18 12:06:31,275 Stage-1 map = 100%,  reduce = 91%, Cumulative CPU 2094.27 sec
    2023-05-18 12:06:37,487 Stage-1 map = 100%,  reduce = 92%, Cumulative CPU 2101.46 sec
    2023-05-18 12:06:48,869 Stage-1 map = 100%,  reduce = 93%, Cumulative CPU 2116.57 sec
    2023-05-18 12:07:01,276 Stage-1 map = 100%,  reduce = 94%, Cumulative CPU 2130.99 sec
    2023-05-18 12:07:07,514 Stage-1 map = 100%,  reduce = 95%, Cumulative CPU 2138.27 sec
    2023-05-18 12:07:13,721 Stage-1 map = 100%,  reduce = 96%, Cumulative CPU 2146.04 sec
    2023-05-18 12:07:19,928 Stage-1 map = 100%,  reduce = 98%, Cumulative CPU 2153.28 sec
    2023-05-18 12:07:25,095 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 2161.03 sec
    2023-05-18 12:08:26,075 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 2234.01 sec
    2023-05-18 12:09:27,065 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 2317.47 sec
    2023-05-18 12:10:28,031 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 2391.56 sec
    2023-05-18 12:11:28,965 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 2462.62 sec
    2023-05-18 12:12:29,865 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 2523.88 sec
    2023-05-18 12:13:30,747 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 2597.22 sec
    2023-05-18 12:14:31,654 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 2668.52 sec
    2023-05-18 12:15:32,505 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 2773.16 sec
    ......
    ......
    2023-05-18 12:34:47,688 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 4100.79 sec
    2023-05-18 12:35:48,450 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 4170.27 sec
    2023-05-18 12:36:49,253 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 4237.83 sec
    2023-05-18 12:37:50,034 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 4303.86 sec
    2023-05-18 12:38:50,803 Stage-1 map = 100%,  reduce = 99%, Cumulative CPU 4371.48 sec
    

    二. 解决方案

    当Hive设定为严格模式(hive.mapred.mode = strict)时,不允许在HQL语句中出现笛卡尔积,这实际说明了Hive 对笛卡尔积支持较弱。因为找不到 join key, Hive只能使用一个reducer 来完成笛卡尔积。

    那么此时我们需要的是人工的给两个表一个join条件,避免只有一个reduce操作。

    将t_big 增加一个随机数的列,取值范围1-20
    将t_lalian数据通过join复制20份
    那么此时两个表就可以通过 num_key来进行join了
    顺便指定一下reduce的个数,以免hive自动判断的reduce数发生错误。

    set hive.auto.convert.join=false;
    set mapred.reduce.tasks = 10;
    
    select tmp1.*,tmp2.price
      from 
    (
    select *,ceiling(rand()*19) as num_key 
      from t_big 
    ) tmp1
    join 
    (
    select t1.*,t2.rn
      from t_lalian t1
     join ( select id as rn from t100 order by id limit 20 ) t2
    ) tmp2
    on tmp1.num_key  = tmp2.rn
    where  tmp1.tx_date >= tmp2.start_date 
      and tmp1.tx_date <  tmp2.end_date;
    

    结论:
    优化后,执行时间由之前的18分钟,优化到4分钟左右

    参考:

    1. https://blog.csdn.net/qq_36039236/article/details/108450666

    相关文章

      网友评论

          本文标题:大数据开发之Hive案例篇7- 笛卡尔积优化一例

          本文链接:https://www.haomeiwen.com/subject/nbebddtx.html