美文网首页
Flink-有界流处理方法DataStream API

Flink-有界流处理方法DataStream API

作者: ssttIsme | 来源:发表于2023-05-13 23:24 被阅读0次



    pom.xml

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
    
        <groupId>com.spoon</groupId>
        <artifactId>FlinkStream</artifactId>
        <version>1.0-SNAPSHOT</version>
        <properties>
            <flink.version>1.13.0</flink.version>
            <java.version>1.8</java.version>
            <scala.binary.version>2.12</scala.binary.version>
            <slf4j.version>1.7.30</slf4j.version>
        </properties>
    
        <dependencies>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-java</artifactId>
                <version>${flink.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
                <version>${flink.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-clients_${scala.binary.version}</artifactId>
                <version>${flink.version}</version>
            </dependency>
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-api</artifactId>
                <version>${slf4j.version}</version>
            </dependency>
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
                <version>1.7.22</version>
            </dependency>
            <dependency>
                <groupId>org.apache.logging.log4j</groupId>
                <artifactId>log4j-to-slf4j</artifactId>
                <version>2.14.0</version>
            </dependency>
        </dependencies>
    
    </project>
    

    log4j.properties


    # 级别,名称
    log4j.rootLogger = error, stdout
    #日志输出到控制台
    log4j.appender.stdout = org.apache.log4j.ConsoleAppender
    log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
    # 日志格式
    log4j.appender.console.layout.ConversionPattern =%-4r [%t] %-5p %c %x - %m%n
    

    words.txt

    hello java
    hello flink
    hello world
    
    package wc;
    import org.apache.flink.api.common.typeinfo.Types;
    import org.apache.flink.api.java.tuple.Tuple2;
    import org.apache.flink.streaming.api.datastream.DataStreamSource;
    import org.apache.flink.streaming.api.datastream.KeyedStream;
    import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    import org.apache.flink.util.Collector;
    
    public class BoundedStreamWordCount {
        public static void main(String[] args) throws Exception {
            //1.创建流式执行环境
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            //2.读取文件
            DataStreamSource<String> lineDataStreamSource = env.readTextFile("input/words.txt");
            //3.转换计算
            SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOneTuple = lineDataStreamSource.flatMap((String line, Collector<Tuple2<String, Long>> out) -> {
                String[] words = line.split(" ");
                for (String word : words) {
                    out.collect(Tuple2.of(word, 1L));
                }
            })
                    .returns(Types.TUPLE(Types.STRING, Types.LONG));
    
            //4.分组
            KeyedStream<Tuple2<String, Long>, String> wordAndOneKeyedStream = wordAndOneTuple.keyBy(data -> data.f0);
            //5.求和
            SingleOutputStreamOperator<Tuple2<String, Long>> sum = wordAndOneKeyedStream.sum(1);
            //6.打印
            sum.print();
            //7.启动执行
            env.execute();
    
        }
    }
    

    运行结果

    2> (java,1)
    3> (hello,1)
    7> (flink,1)
    3> (hello,2)
    3> (hello,3)
    5> (world,1)
    

    并不是按照顺序输出,因为程序用多线程模拟flink集群
    2> (java,1) 2是并行子任务编号-代表本地的哪个线程来执行输出统计结果的任务对应flink占据的那个并行的资源,在flink里最小的资源单位叫做任务槽task slot

    相关文章

      网友评论

          本文标题:Flink-有界流处理方法DataStream API

          本文链接:https://www.haomeiwen.com/subject/nbvusdtx.html