VGG

作者: Laniakea_01d0 | 来源:发表于2019-12-09 11:53 被阅读0次

【深度学习】VGGNet原理解析及实现
VGGNet由牛津大学的视觉几何组(Visual Geometry Group)和Google DeepMind公司的研究员共同提出,是ILSVRC-2014中定位任务第一名和分类任务第二名。其突出贡献在于证明使用很小的卷积(3*3),增加网络深度可以有效提升模型的效果,而且VGGNet对其他数据集具有很好的泛化能力。到目前为止,VGGNet依然经常被用来提取图像特征。

VGGNet探索了CNN的深度及其性能之间的关系,通过反复堆叠3*3的小型卷积核和2*2的最大池化层,VGGNet成功的构筑了16-19层深的CNN。

一、VGGNet结构

VGGNet有A-E七种结构,从A-E网络逐步变深,但是参数量并没有增长很多(图6-7),原因为:参数量主要消耗在最后3个全连接层,而前面的卷积层虽然层数多,但消耗的参数量不大。不过,卷积层的训练比较耗时,因为其计算量大。

其中,D和E是常说的VGGNet-16和VGGNet-19。C很有意思,相比于B多了几个1*1的卷积层,1*1卷积的意义在于线性变换,而输入的通道数和输出的通道数不变,没有发生降维。

VGG的性能:

VGGNet网络特点:

  1. VGGNet拥有5段卷积,每段卷积内有2-3个卷积层,同时每段尾部都会连接一个最大池化层(用来缩小图片)。

  2. 每段内的卷积核数量一样,越后边的段内卷积核数量越多,依次为:64-128-256-512-512

  3. 越深的网络效果越好。(图6-9)

  4. LRN层作用不大(作者结论)

  5. 11的卷积也是很有效的,但是没有33的卷积好,大一些的卷积核可以学习更大的空间特征。

为什么一个段内有多个3*3的卷积层堆叠?

这是个非常有用的设计。如下图所示,2个33的卷积层串联相当于1个55的卷积层,即一个像素会跟周围55的像素产生关联,可以说感受野大小为55。而3个33的卷积层相当于1个77的卷积层。并且,两个33的卷积层的参数比1个55的更少,前者为233=18,后者为155=25。

更重要的是,2个33的卷积层比1个55的卷积层有更多的非线性变换(前者可使用2次ReLu函数,后者只有两次),这使得CNN对特征的学习能力更强。

所以3*3的卷积层堆叠的优点为:

(1)参数量更小

(2)小的卷积层比大的有更多的非线性变换,使得CNN对特征的学习能力更强。

与其他网络对比:

与ILSVRC-2012和ILSVRC-2013最好结果相比,VGGNet优势很大。与GoogLeNet对比,虽然7个网络集成效果不如GoogLeNet,但是单一网络测试误差好一些,而且只用2个网络集成效果与GoogLeNet的7网络集成差不多。

相关文章

  • vgg-8s、vgg-16s、vgg-32s

    解释VGG中的vgg-8s、vgg-16s、vgg-32s

  • vgg16.npy 和vgg19.npy

    vgg16.npy 和vgg19.npy 下载 - lqp888888的博客 - CSDN博客 vgg16.npy...

  • fdd

    vgg

  • 【转载】VGG in TensorFlow

    原文链接:http://www.cs.toronto.edu/~frossard/post/vgg16/ VGG ...

  • 看懂paper中的卷积堆叠感受野计算

    VGG中卷积堆叠 在赢得其中一届ImageNet比赛里VGG网络的文章中,他最大的贡献并不是VGG网络本身,而是他...

  • 2018-12-20VGG16相关资料

    VGG16学习笔记 VGG16整体架构图;部分keras代码 深度学习、图像分类入门,从VGG16卷积神经网络开始...

  • 【VGG系列】VGG19

    先看看VGG19的pytorch加载实现 输出的网络结构: VGG((features): Sequential(...

  • VGG 1 模型实现

    有了AelxNet网络的实现基础后,创建一个VGG网络是很简单的事情了。仿照这里的VGG实现,我对VGG网络进行了...

  • 使用不同规模的`VGG`

    vgg-16_keras 参考 1. VGG-16 结构   更改网络结构(delete some layers)...

  • VGG

    VGG 从图中可以看出VGG结构由5层卷积层、3层全连接层、softmax输出层构成,层与层之间使用max-poo...

网友评论

      本文标题:VGG

      本文链接:https://www.haomeiwen.com/subject/ncsbgctx.html