HashMap源码

作者: 冬狮郎 | 来源:发表于2020-05-14 14:45 被阅读0次
    public class HashMap<K,V> extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable {
    
        private static final long serialVersionUID = 362498820763181265L;
    
        /**
         * The default initial capacity - MUST be a power of two.
         * map的默认大小。必须为2的幂次方。因为只需要左移一位即可完成扩容。
         * 附:1左移4位即10000。2的4次方。
         */
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        /**
         * The maximum capacity, used if a higher value is implicitly specified
         * by either of the constructors with arguments.
         * MUST be a power of two <= 1<<30.
         * 必须是2的倍数,并且小于2的30次幂。
         * 因为我们已知,Integer.MAX_VALUE = 2的31次幂-1,
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;
    
        /**
         * The load factor used when none specified in constructor.
         * 加载因子。(数组的大小 * 加载因子 = 扩容阈值)
         * 当数组大小>=扩容阈值时,触发扩容机制。即 容量 * 2
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
        /**
         * The bin count threshold for using a tree rather than list for a
         * bin.  Bins are converted to trees when adding an element to a
         * bin with at least this many nodes. The value must be greater
         * than 2 and should be at least 8 to mesh with assumptions in
         * tree removal about conversion back to plain bins upon
         * shrinkage.
         * 1.8版本新增参数。树化阈值。当链表中数量大于此阈值时触发树化操作。
         */
        static final int TREEIFY_THRESHOLD = 8;
    
        /**
         * The bin count threshold for untreeifying a (split) bin during a
         * resize operation. Should be less than TREEIFY_THRESHOLD, and at
         * most 6 to mesh with shrinkage detection under removal.
         * 1.8版本新增参数。反树化阈值。当链表中小于此阈值时触发反树化操作。
         */
        static final int UNTREEIFY_THRESHOLD = 6;
    
        /**
         * The smallest table capacity for which bins may be treeified.
         * (Otherwise the table is resized if too many nodes in a bin.)
         * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
         * between resizing and treeification thresholds.
         * 1.8版本新增参数。最小树化数组容量。接上两个参数。当数组的容量小于此值时,
         * 即便链表中数量大于树化阈值,也不会触发树化操作。参考treeifyBin()方法中的使用。
         */
        static final int MIN_TREEIFY_CAPACITY = 64;
    
        /**
         * Basic hash bin node, used for most entries.  (See below for
         * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
         * Map的基础元素。
         */
        static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;// key的hash值,直接保存,减少比对过程中的hash运算次数。
            final K key;
            V value;
            Node<K,V> next;
    
            Node(int hash, K key, V value, Node<K,V> next) {
                this.hash = hash;
                this.key = key;
                this.value = value;
                this.next = next;
            }
    
            public final K getKey()        { return key; }
            public final V getValue()      { return value; }
            public final String toString() { return key + "=" + value; }
    
           /**
            * 众所周知,重写了hashcode()方法,就必须要重写equals()方法
            * 对key和value进行hashcode运算,然后异或运算(^)。(只有0和1异或才能得1)
            * 2 ^ 6 = 4 
            *   0010(2)
            * ^ 0110(6)
            * ---------
            *   0100(4)
            * 另外,Object.hashCode()这个方法,只是将数据转换为十进制。
            * 即,Object.hashCode("a")=97; Object.hashCode(123456)=123456
            */
            public final int hashCode() {
                return Objects.hashCode(key) ^ Objects.hashCode(value);
            }
    
            public final V setValue(V newValue) {
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
    
           /**
            * ...没得解释
            */
            public final boolean equals(Object o) {
                if (o == this)
                    return true;
                if (o instanceof Map.Entry) {
                    Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                    if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                        return true;
                }
                return false;
            }
        }
    
        /* ---------------- Static utilities -------------- */
    
        /**
         * 较为重要的一个方法,对key进行hash运算。
         * 这块儿1.8之后有了优化。因为1.8后有了红黑树,所以此hash算法优化的更简单了。
         * 1、如果key是null,获取到的值为0,即数组为0的下标位置。
         * 2、对key进行hashCode运算,同时,进行右移16位并做异或运算。
         * 
         * 为什么是16位呢?
         * 因为hashCode返回类型是int,最大为2的32次幂-1,也就是最大32位。
         * 拿高16位和低16位进行位运算,也叫扰动函数。
         * 1是位运算效率极高;2是降低hash碰撞的概率。
         */
        static final int hash(Object key) {
            int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
        }
    
        /**
         * Returns x's Class if it is of the form "class C implements
         * Comparable<C>", else null.
         *
         * Comparable这个接口,强行对实现它的每个类的对象进行整体排序。
         * 这个方法功能很简单,就是判断x是否实现了Comparable接口。
         * 如果实现了,就返回x的class类,否则返回null。
         *
         * 查询这个方法在本类中的使用,我们会发现这个功能是为了给TreeNode使用的。
         * 如果方法返回了null,下一步会执行tieBreakOrder()方法。
         *
         * 简单来说,如果key实现了Comparable接口,那就直接进行比较;如果没有,那就自定义一个去比较。
         * 这块儿需要结合TreeNode的查询操作看。
         */
        static Class<?> comparableClassFor(Object x) {
            if (x instanceof Comparable) {
                Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
                if ((c = x.getClass()) == String.class) // bypass checks
                    return c;
                if ((ts = c.getGenericInterfaces()) != null) {
                    for (int i = 0; i < ts.length; ++i) {
                        if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType)t).getRawType() ==
                             Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c) // type arg is c
                            return c;
                    }
                }
            }
            return null;
        }
    
        /**
         * Returns k.compareTo(x) if x matches kc (k's screened comparable
         * class), else 0.
         * 如果x是kc类,返回k.compareTo(x)的结果;
         * 如果x为空或类型不是kc,返回0
         */
        @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
        static int compareComparables(Class<?> kc, Object k, Object x) {
            return (x == null || x.getClass() != kc ? 0 :
                    ((Comparable)k).compareTo(x));
        }
    
        /**
         * Returns a power of two size for the given target capacity.
         * 这是位运算。(废话)。作者是真的牛逼。代码还少,效率还高。
         *
         * 获取第一个大于当前给定数据的2次幂数据。为防止直接给了2次幂数据,所以计算前先-1.
         * (比如,设置了5,经过此方法计算结果为8。设置了8,计算结果也为8)
         *
         * 目的就是用最高位的1替换所有低位。写个极端的例子。
         *   1000000000000001 
         *   0100000000000000  (>>> 1)
         *  ------------------
         *   1100000000000001  (或运算结果)
         *   0011000000000000  (>>> 2)
         *  ------------------
         *   1111000000000001  (或运算结果)
         *   0000111100000001  (>>> 4)
         *  ------------------
         *   1111111100000001  (或运算结果)
         *   0000000011111111  (>>> 8)
         *  ------------------
         *   1111111111111111  (或运算结果)
         *   0000000000000000  (>>> 16)
         *  ------------------
         *   1111111111111111  (最终结果)
         *
         * 获取到最终结果,只需要加1,即变成2的次幂数(2的16次幂)。
         */
        static final int tableSizeFor(int cap) {
            int n = cap - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        }
    
        /* ---------------- Fields -------------- */
    
        /**
         * The table, initialized on first use, and resized as
         * necessary. When allocated, length is always a power of two.
         * (We also tolerate length zero in some operations to allow
         * bootstrapping mechanics that are currently not needed.)
         *
         * 后面几个参数都没再细看。注意关键字transient。
         */
        transient Node<K,V>[] table;
    
        /**
         * Holds cached entrySet(). Note that AbstractMap fields are used
         * for keySet() and values().
         */
        transient Set<Map.Entry<K,V>> entrySet;
    
        /**
         * The number of key-value mappings contained in this map.
         */
        transient int size;
    
        /**
         * The number of times this HashMap has been structurally modified
         * Structural modifications are those that change the number of mappings in
         * the HashMap or otherwise modify its internal structure (e.g.,
         * rehash).  This field is used to make iterators on Collection-views of
         * the HashMap fail-fast.  (See ConcurrentModificationException).
         */
        transient int modCount;
    
        /**
         * The next size value at which to resize (capacity * load factor).
         *
         * @serial
         */
        // (The javadoc description is true upon serialization.
        // Additionally, if the table array has not been allocated, this
        // field holds the initial array capacity, or zero signifying
        // DEFAULT_INITIAL_CAPACITY.)
        // 这个关键字是扩容阈值。当数组的size大于它的时候会触发扩容操作。
        int threshold;
    
        /**
         * The load factor for the hash table.
         * 加载因子。上面有个默认加载因子0.75。
         *
         * @serial
         */
        final float loadFactor;
    
        /* ---------------- Public operations -------------- */
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         *
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         *
         * @param  initialCapacity the initial capacity.
         * @throws IllegalArgumentException if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         */
        public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         *
         * @param   m the map whose mappings are to be placed in this map
         * @throws  NullPointerException if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
    
        /**
         * Implements Map.putAll and Map constructor
         *
         * @param m the map
         * @param evict false when initially constructing this map, else
         * true (relayed to method afterNodeInsertion).
         *
         * a.putAll(b) -> b为空就直接结束。
         * 如果a为空,那么要对a进行初始化操作。
         * 上面if里面的逻辑,实际上就是为了通过b的大小来设置a合适的默认空间大小(2的幂次方)。
         * (个人推测:可能初始化b时给b设置容量为256,但是实际b只用了2,那么这里就已2为准,推测出a的合适大小。)
         * 如果b不为空,那么就判断b是否需要扩容。
         * 这块儿逻辑比较奇怪,put的时候不是会扩容吗?为什么这里还要判断一下?
         *
         * 在下面的for循环里面,实际上就是进行真正的put操作了。
         */
        final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
            int s = m.size();
            if (s > 0) {
                if (table == null) { // pre-size
                    // 由m的实际大小/加载因子,简单推测之前map的默认大小;
                    // +1是为了向上取整数。比如计算结果为13.66,+1就是14.66,下面int强转时候变成14。
                    float ft = ((float)s / loadFactor) + 1.0F;
                    int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                             (int)ft : MAXIMUM_CAPACITY);
                    // 再重新计算默认大小为2的次幂。
                    if (t > threshold)
                        threshold = tableSizeFor(t);
                }
                // 不为空,就判断是否需要扩容
                else if (s > threshold)
                    resize();
                for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                    K key = e.getKey();
                    V value = e.getValue();
                    putVal(hash(key), key, value, false, evict);
                }
            }
        }
    
        /**
         * Returns the number of key-value mappings in this map.
         *
         * @return the number of key-value mappings in this map
         */
        public int size() {
            return size;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains no key-value mappings.
         *
         * @return <tt>true</tt> if this map contains no key-value mappings
         */
        public boolean isEmpty() {
            return size == 0;
        }
    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}.  (There can be at most one such mapping.)
         *
         * <p>A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         *
         * @see #put(Object, Object)
         */
        public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
    
        /**
         * Implements Map.get and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @return the node, or null if none
         * 
         * 这里记录一下。和putVal()方法一样。
         * 数组 + 链表 + 红黑树的结构,
         * 如果是链表,数组下标处存的就是Node<K,V>,通过next查找下一个;
         * 如果是红黑树,数组下标处存的就是TreeNode<K,V>,通过find寻找下一个。
         */
        final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            // 判断当前map不为空
                // put的时候,根据key的hash值和数组大小进行与运算,获取到要存储的数组位置然后插入;
                // 所以get的时候,直接判断该数组位置不能为空。
                // 这里有个小知识点。【在tab为2次幂时,hash % tab = tab[(n - 1) & hash]】。
                // 总结说,我们要对hash值对数组长度取余,获取到具体的数组下标。
                // 但是,数组长度是2次幂,所以正好可以用位运算将取余的操作替换掉,更提高了效率。
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                // 从第一个开始查,判断key是否相等,key的hash是否相等
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                // 不是第一个数据,那么就要往它的下一个进行查找
                if ((e = first.next) != null) {
                    // 数组下,不确定数据结构是红黑树还是链表,所以判断下数据结构。
                    // 是红黑树,走红黑树的查询逻辑
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    // 是链表,就直接从上往下遍历,判断key和key的hash值是否相等。
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains a mapping for the
         * specified key.
         *
         * @param   key   The key whose presence in this map is to be tested
         * @return <tt>true</tt> if this map contains a mapping for the specified
         * key.
         * 还是走的上面方法
         */
        public boolean containsKey(Object key) {
            return getNode(hash(key), key) != null;
        }
    
        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
    
        /**
         * Implements Map.put and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to put
         * @param onlyIfAbsent if true, don't change existing value
         * @param evict if false, the table is in creation mode.
         * @return previous value, or null if none
         * 
         * 这里记录一下。和getNode()方法一样。
         * 数组 + 链表 + 红黑树的结构,
         * 如果是链表,数组下标处存的就是Node<K,V>,通过next查找下一个;
         * 如果是红黑树,数组下标处存的就是TreeNode<K,V>,通过find寻找下一个。
         */
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            // 当前map为空,就初始化它的size
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
            // 数组下标的数据为空,那么直接将数据放在数组下标处。
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
            // 数组下标的数据存在,hash冲突了
            else {
                Node<K,V> e; K k;
                // 判断数组下标处的key和当前put的key是否相同。如果相同,就直接替换value值。
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                // 判断它的数据结构,是红黑树。
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                // 是链表。
                else {
                    // 死循环,遍历查找
                    for (int binCount = 0; ; ++binCount) {
                        // 它的下一个Node节点为空
                        if ((e = p.next) == null) {
                            // 1、将值指定为当前Node的next();也就是尾插法
                            p.next = newNode(hash, key, value, null);
                            // 2、判断是否需要触发树化操作
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        // key和key的hash值比较,重复了。那就直接替换value值
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                // 如果,key对应的node为空,那么e为新数据;如果key对应的node不为空,那么e为旧数据。
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    // 如果onlyIfAbsent为true,那么不修改已有数据。不过一般情况都为false。
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    // LinkedHashMap实现了具体的方法,就是把当前节点移至尾部。尾插法。
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            // 判断是否需要扩容
            if (++size > threshold)
                resize();
            // LinkedHashMap实现了具体的方法,注释为:possibly remove eldest
            // 当初始化的时候,evict是false,其他情况为true。
            // 如果我们设置了它的最大值100,当数量超过100的时候,这个方法支持删除最老的元素。
            afterNodeInsertion(evict);
            return null;
        }
    
       /**
         * Initializes or doubles table size.  If null, allocates in
         * accord with initial capacity target held in field threshold.
         * Otherwise, because we are using power-of-two expansion, the
         * elements from each bin must either stay at same index, or move
         * with a power of two offset in the new table.
         *
         * 首先,什么时候会触发resize()方法?当map中数据的容量大于扩容阈值threshold时,或map为空初始化时。
         * 
         *
         * @return the table
         */
        final Node<K,V>[] resize() {
            Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
                // 旧map不为空
            if (oldCap > 0) {
                // 旧map已满,重写下扩容阈值直接返回旧map。
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
                // 旧map容量*2后小于最大容量并且旧map容量大于默认容量,旧的扩容阈值*2。
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            }
                // 初始化有参map时走此分支。threshold作为扩容阈值,同时也作为当前map的容量。
            else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
                // 初始化无参map时走此分支,初始化容量和扩容阈值。
            else {               // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
                // 什么时候newThr为空?
                // 往上看,1、初始化有参map时,2、扩容时,oldCap小于默认初始化大小,都没给newThr赋值;
            if (newThr == 0) {
                // 进来的目的是什么?ft是获取到了扩容阈值;同时设置新map的扩容阈值;
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
                    // 将当前扩容阈值赋值给map,作为map的扩容阈值
            threshold = newThr;
            @SuppressWarnings({"rawtypes","unchecked"})
                // 创建了给定大小的数组。(上面三个if/else就是为了给newCap赋值。)
                Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
                // oldTab==null就是初始化逻辑。
                // 所以,下面逻辑才是真正的扩容要走的。旧map中的数据转移到新map中去。
            if (oldTab != null) {
                // 遍历旧map中每一个数据
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    // 将数据赋值给e
                    if ((e = oldTab[j]) != null) {
                        // 数组清空一位
                        oldTab[j] = null;
                        // 链表结构下,如果数组下标下的数据只有一条数据,
                        // 那么直接开始当前数组下标下数据的转移。
                        if (e.next == null)
                            newTab[e.hash & (newCap - 1)] = e;
                        // 如果是红黑树结构,那么通过split方法进行拆分。具体后聊。
                        else if (e instanceof TreeNode)
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        // 链表结构下,当前数组下标下的数据,还有next
                        else { // preserve order
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                          
                          /**
                           * 这块儿好好写下。
                           * 
                           * 与运算的时候,两边都为1,结果才为1。 1010 & 0110 = 0010
                           * 
                           * 我们put/get的时候,都是通过hash & [cap - 1],来定位所存放的数组位置。
                           * 但是在这里,稍微有些不同,与运算时候,是通过cap。
                           * 
                           * oldCap = 8;我们插入时,需要拿hash与7进行与运算。
                           * 1、9、17、25这四条数据与运算的结果都是1。也就是在数组1位置形成链表。
                           * 
                           * 现在,拿hash与8进行与运算,结果为[0 8 0 8]
                           * 那也就是说,
                           * 1和17组成新的链表,位置为1;
                           * 9和25组成新的链表,位置为1+8;
                           * 
                           */
                            do {
                                next = e.next;
                                // 与原oldCap与运算的结果只有两种:0、oldCap。
                                // 还是采用的尾插法插入数据。
                                if ((e.hash & oldCap) == 0) {
                                    // 为0的时候,存放lo相关;
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {
                                    // 为cap的时候,存hi相关;
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            // 遍历两个链表。lo链表直接移入对应数组下标处,
                            // hi链表移入[j + oldCap]对应数组下标处;
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }
    
        /**
         * Replaces all linked nodes in bin at index for given hash unless
         * table is too small, in which case resizes instead.
         */
        final void treeifyBin(Node<K,V>[] tab, int hash) {
            int n, index; Node<K,V> e;
            if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
                resize();
            // 快速定位到需要树化的数组下标处
            else if ((e = tab[index = (n - 1) & hash]) != null) {
                TreeNode<K,V> hd = null, tl = null;
                do {
                        // 创建一个以tl为头结点的类似于双向链表结构的树型结构。
                    TreeNode<K,V> p = replacementTreeNode(e, null);
                    if (tl == null)
                        hd = p;
                    else {
                        p.prev = tl;
                        tl.next = p;
                    }
                    tl = p;
                } while ((e = e.next) != null);
                if ((tab[index] = hd) != null)
                    // 真正的树化操作
                    hd.treeify(tab);
            }
        }
    
        /**
         * Copies all of the mappings from the specified map to this map.
         * These mappings will replace any mappings that this map had for
         * any of the keys currently in the specified map.
         *
         * @param m mappings to be stored in this map
         * @throws NullPointerException if the specified map is null
         */
        public void putAll(Map<? extends K, ? extends V> m) {
            putMapEntries(m, true);
        }
    
        /**
         * Removes the mapping for the specified key from this map if present.
         *
         * @param  key key whose mapping is to be removed from the map
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V remove(Object key) {
            Node<K,V> e;
            return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
        }
    
        /**
         * Implements Map.remove and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to match if matchValue, else ignored
         * @param matchValue if true only remove if value is equal
         * @param movable if false do not move other nodes while removing
         * @return the node, or null if none
         */
        final Node<K,V> removeNode(int hash, Object key, Object value,
                                   boolean matchValue, boolean movable) {
            Node<K,V>[] tab; Node<K,V> p; int n, index;
            // 简单的判空操作。数组不为空、长度不为0,数组下标下的数据不为空
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
                Node<K,V> node = null, e; K k; V v;
                // 判断数组下标处的数据是否为我们需要查找的数据
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    node = p;
                // p的下一个节点不为空,判断它的数据结构,并准备遍历
                else if ((e = p.next) != null) {
                    // 走树的查找逻辑
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                    else {
                        // 链表循环查找
                        do {
                            if (e.hash == hash &&
                                ((k = e.key) == key ||
                                 (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
                // 已经找到了需要删除的节点。
                if (node != null && (!matchValue || (v = node.value) == value ||
                                     (value != null && value.equals(v)))) {
                    // 如果是树结构,走树的删除逻辑
                    if (node instanceof TreeNode)
                        ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                    else if (node == p)
                        tab[index] = node.next;
                    else
                        p.next = node.next;
                    ++modCount;
                    --size;
                    // 把当前节点的前驱和当前节点的后继联系起来
                    afterNodeRemoval(node);
                    return node;
                }
            }
            return null;
        }
    

    相关文章

      网友评论

        本文标题:HashMap源码

        本文链接:https://www.haomeiwen.com/subject/ndvonhtx.html