美文网首页
1、alloc 分析

1、alloc 分析

作者: ChenL | 来源:发表于2020-09-07 16:14 被阅读0次
    image.png

    通过一系列的符号断点调试,我们能发现alloc 底层的调用过程有

    _objc_rootAlloc

    calloc

    objc_msgSend

    _objc_rootAllocWithZone

    _class_createInstanceFromZone

    其中 _class_createInstanceFromZone 又分为三步

    1, cls ->InstanceSize //计算所需内存大小
    2, calloc, //,根据所需内存大小进行系统分配
    3,objc ->InitInstanceIsa //分配了内存后和相关的类进行关联对象

    //alloc源码分析-第一步
    + (id)alloc {
        return _objc_rootAlloc(self);
    }
    
    //alloc源码分析-第二步
    id
    _objc_rootAlloc(Class cls)
    {
        return callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/);
    }
    
    static ALWAYS_INLINE id
    callAlloc(Class cls, bool checkNil, bool allocWithZone=false)// alloc 源码 第三步
    {
    #if __OBJC2__ //有可用的编译器优化
        /*
         参考链接:https://www.jianshu.com/p/536824702ab6
         */
        
        // checkNil 为false,!cls 也为false ,所以slowpath 为 false,假值判断不会走到if里面,即不会返回nil
        if (slowpath(checkNil && !cls)) return nil;
        
        //判断一个类是否有自定义的 +allocWithZone 实现,没有则走到if里面的实现
        if (fastpath(!cls->ISA()->hasCustomAWZ())) {
            return _objc_rootAllocWithZone(cls, nil);
        }
    #endif
    
        // No shortcuts available. // 没有可用的编译器优化
        if (allocWithZone) {
            return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
        }
        return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
    }
    
    NEVER_INLINE
    id
    _objc_rootAllocWithZone(Class cls, malloc_zone_t *zone __unused)
    {
        // allocWithZone under __OBJC2__ ignores the zone parameter
        return _class_createInstanceFromZone(cls, 0, nil,
                                             OBJECT_CONSTRUCT_CALL_BADALLOC);
    }
    
    static ALWAYS_INLINE id
    _class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
                                  int construct_flags = OBJECT_CONSTRUCT_NONE,
                                  bool cxxConstruct = true,
                                  size_t *outAllocatedSize = nil)
    {
        ASSERT(cls->isRealized());
    
        // Read class's info bits all at once for performance
        bool hasCxxCtor = cxxConstruct && cls->hasCxxCtor();
        bool hasCxxDtor = cls->hasCxxDtor();
        bool fast = cls->canAllocNonpointer();
        size_t size;
       1:根据字节对齐机制计算出相关的分配所需内存空间的大小
        size = cls->instanceSize(extraBytes);
        if (outAllocatedSize) *outAllocatedSize = size;
    
        id obj;
        if (zone) {
            obj = (id)malloc_zone_calloc((malloc_zone_t *)zone, 1, size);
        } else {
            2、alloc 开辟内存的地方
            obj = (id)calloc(1, size);
        }
        if (slowpath(!obj)) {
            if (construct_flags & OBJECT_CONSTRUCT_CALL_BADALLOC) {
               3:根据分配的内存情况管理对象
                return _objc_callBadAllocHandler(cls);
            }
            return nil;
        }
    
        if (!zone && fast) {
            obj->initInstanceIsa(cls, hasCxxDtor);
        } else {
            // Use raw pointer isa on the assumption that they might be
            // doing something weird with the zone or RR.
            obj->initIsa(cls);
        }
    
        if (fastpath(!hasCxxCtor)) {
            return obj;
        }
    
        construct_flags |= OBJECT_CONSTRUCT_FREE_ONFAILURE;
        return object_cxxConstructFromClass(obj, cls, construct_flags);
    }
    
    内存大小计算
     size_t instanceSize(size_t extraBytes) const {
            if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
                return cache.fastInstanceSize(extraBytes);
            }
    
            size_t size = alignedInstanceSize() + extraBytes;
            // CF requires all objects be at least 16 bytes.
            if (size < 16) size = 16;
            return size;
        }
    
    跳转至fastInstanceSize的源码实现,通过断点调试,会执行到align16
    size_t fastInstanceSize(size_t extra) const
        {
            ASSERT(hasFastInstanceSize(extra));
    
            if (__builtin_constant_p(extra) && extra == 0) {
                return _flags & FAST_CACHE_ALLOC_MASK16;
            } else {
                size_t size = _flags & FAST_CACHE_ALLOC_MASK;
                // remove the FAST_CACHE_ALLOC_DELTA16 that was added
                // by setFastInstanceSize
                return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
            }
        }
    
    跳转至align16的源码实现,这个方法是16字节对齐算法
    static inline size_t align16(size_t x) {
        return (x + size_t(15)) & ~size_t(15);
    }
    
    为什么需要16字节对齐?

    1、通常内存是由一个个字节组成的,cpu在存取数据时,并不是以字节为单位存储,而是以块为单位存取,块的大小为内存存取力度。频繁存取字节未对齐的数据,会极大降低cpu的性能,所以可以通过减少存取次数来降低cpu的开销
    2、16字节对齐,是由于在一个对象中,第一个属性isa占8字节,当然一个对象肯定还有其他属性,当无属性时,会预留8字节,即16字节对齐,如果不预留,相当于这个对象的isa和其他对象的isa紧挨着,容易造成访问混乱
    3、16字节对齐后,可以加快CPU读取速度,同时使访问更安全,不会产生访问混乱的情况

    相关文章

      网友评论

          本文标题:1、alloc 分析

          本文链接:https://www.haomeiwen.com/subject/ngqlektx.html