python的特殊方法
-
特殊方法定义在class中
-
不需要直接调用
-
Python的某些函数或者操作符会调用对应的特殊方法
正确实现特殊方法
- 只需要编写用到的特殊方法
- 有关联性的特殊方法必须实现
__getattr__
__setattr__
__delattr__
1.Python中__str__
和 __repr__
如果要把一个类的实例变成 str
,就需要实现特殊方法__str__():
class Person(object):
def __init__(self, name, gender):
self.name = name
self.gender = gender
def __str__(self):
return '(Person: %s, %s)' % (self.name, self.gender)
现在,在交互式命令行下用 print 试试:
>>> p = Person('Bob', 'male')
>>> print p
(Person: Bob, male)
但是,如果直接敲变量 p:
>>> p
<main.Person object at 0x10c941890>
似乎__str__()
不会被调用。
因为 Python 定义了__str__()
和__repr__()
两种方法,__str__()
用于显示给用户,而__repr__()
用于显示给开发人员。
有一个偷懒的定义__repr__
的方法:
class Person(object):
def __init__(self, name, gender):
self.name = name
self.gender = gender
def __str__(self):
return '(Person: %s, %s)' % (self.name, self.gender)
__repr__ = __str__
2.python中 __cmp__
对 int、str 等内置数据类型排序时,Python的 sorted() 按照默认的比较函数 cmp 排序,但是,如果对一组 Student 类的实例排序时,就必须提供我们自己的特殊方法 __cmp__():
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def __str__(self):
return '(%s: %s)' % (self.name, self.score)
__repr__ = __str__
def __cmp__(self, s):
if self.name < s.name:
return -1
elif self.name > s.name:
return 1
else:
return 0
上述 Student 类实现了cmp()方法,cmp用实例自身self和传入的实例 s 进行比较,如果 self 应该排在前面,就返回 -1,如果 s 应该排在前面,就返回1,如果两者相当,返回 0。
Student类实现了按name进行排序:
>>> L = [Student('Tim', 99), Student('Bob', 88), Student('Alice', 77)]
>>> print sorted(L)
[(Alice: 77), (Bob: 88), (Tim: 99)]
例子:
请修改 Student 的 cmp 方法,让它按照分数从高到底排序,分数相同的按名字排序。
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def __str__(self):
return '(%s: %s)' % (self.name, self.score)
__repr__ = __str__
def __cmp__(self, s):
if self.score == s.score:
return cmp(self.name, s.name)
return -cmp(self.score, s.score)
L = [Student('Tim', 99), Student('Bob', 88), Student('Alice', 99)]
print sorted(L)
3.python中 __len__
如果一个类表现得像一个list,要获取有多少个元素,就得用 len() 函数。
要让len()
函数工作正常,类必须提供一个特殊方法__len__()
,它返回元素的个数。
例如,我们写一个Students
类,把名字传进去:
class Students(object):
def __init__(self, *args):
self.names = args
def __len__(self):
return len(self.names)
只要正确实现了len()方法,就可以用len()函数返回Students实例的“长度”:
>>> ss = Students('Bob', 'Alice', 'Tim')
>>> print len(ss)
3
4.python中__slots__
由于Python是动态语言,任何实例在运行期都可以动态地添加属性。
如果要限制添加的属性,例如,Student
类只允许添加name
、gender
和score
这3个属性,就可以利用Python的一个特殊的__slots__
来实现。
顾名思义,slots是指一个类允许的属性列表:
class Student(object):
__slots__ = ('name', 'gender', 'score')
def __init__(self, name, gender, score):
self.name = name
self.gender = gender
self.score = score
现在,对实例进行操作:
>>> s = Student('Bob', 'male', 59)
>>> s.name = 'Tim' # OK
>>> s.score = 99 # OK
>>> s.grade = 'A'
Traceback (most recent call last):
...
AttributeError: 'Student' object has no attribute 'grade'
__slots__
的目的是限制当前类所能拥有的属性,如果不需要添加任意动态的属性,使用__slots__
也能节省内存。
任务
假设Person类通过slots定义了name和gender,请在派生类Student中通过slots继续添加score的定义,使Student类可以实现name、gender和score 3个属性。
参考代码:
class Person(object):
__slots__ = ('name', 'gender')
def __init__(self, name, gender):
self.name = name
self.gender = gender
class Student(Person):
__slots__ = ('score',)
def __init__(self, name, gender, score):
super(Student, self).__init__(name, gender)
self.score = score
s = Student('Bob', 'male', 59)
s.name = 'Tim'
s.score = 99
print s.score
5.python中 __call__
在Python中,函数其实是一个对象:
>>> f = abs
>>> f.__name__
'abs'
>>> f(-123)
123
由于 f
可以被调用,所以,f
被称为可调用对象。
所有的函数都是可调用对象。
一个类实例也可以变成一个可调用对象,只需要实现一个特殊方法__call__()
。
我们把 Person 类变成一个可调用对象:
class Person(object):
def __init__(self, name, gender):
self.name = name
self.gender = gender
def __call__(self, friend):
print 'My name is %s...' % self.name
print 'My friend is %s...' % friend
现在可以对 Person 实例直接调用:
>>> p = Person('Bob', 'male')
>>> p('Tim')
My name is Bob...
My friend is Tim...
单看 p('Tim')
你无法确定 p 是一个函数还是一个类实例,所以,在Python中,函数也是对象,对象和函数的区别并不显著。
任务
改进一下前面定义的斐波那契数列:
class Fib(object):
???
请加一个call方法,让调用更简单:
>>> f = Fib()
>>> print f(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
要正确定义参数:call(self, num)
参考代码:
class Fib(object):
def __call__(self, num):
a, b, L = 0, 1, []
for n in range(num):
L.append(a)
a, b = b, a + b
return L
f = Fib()
print f(10)
6.python中 @property
考察 Student
类:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
当我们想要修改一个Student
的scroe
属性时,可以这么写:
s = Student('Bob', 59)
s.score = 60
但是也可以这么写:
s.score = 1000
显然,直接给属性赋值无法检查分数的有效性。
如果利用两个方法:
class Student(object):
def __init__(self, name, score):
self.name = name
self.__score = score
def get_score(self):
return self.__score
def set_score(self, score):
if score < 0 or score > 100:
raise ValueError('invalid score')
self.__score = score
这样一来,s.set_score(1000) 就会报错。
这种使用 get/set 方法来封装对一个属性的访问在许多面向对象编程的语言中都很常见。
但是写 s.get_score() 和 s.set_score() 没有直接写 s.score 来得直接。
有没有两全其美的方法?----有。
因为Python支持高阶函数,在函数式编程中我们介绍了装饰器函数,可以用装饰器函数把 get/set 方法“装饰”成属性调用:
class Student(object):
def __init__(self, name, score):
self.name = name
self.__score = score
@property
def score(self):
return self.__score
@score.setter
def score(self, score):
if score < 0 or score > 100:
raise ValueError('invalid score')
self.__score = score
注意: 第一个score(self)
是get方法,用@property装饰,第二个score(self, score)
是set方法,用@score.setter
装饰,@score.setter
是前一个@property
装饰后的副产品。
现在,就可以像使用属性一样设置score了:
>>> s = Student('Bob', 59)
>>> s.score = 60
>>> print s.score
60
>>> s.score = 1000
Traceback (most recent call last):
...
ValueError: invalid score
说明对 score 赋值实际调用的是 set方法。
任务
如果没有定义set方法,就不能对“属性”赋值,这时,就可以创建一个只读“属性”。
请给Student类加一个grade属性,根据 score 计算 A(>=80)、B、C(<60)。
参考代码:
class Student(object):
def __init__(self, name, score):
self.name = name
self.__score = score
@property
def score(self):
return self.__score
@score.setter
def score(self, score):
if score < 0 or score > 100:
raise ValueError('invalid score')
self.__score = score
@property
def grade(self):
if self.score < 60:
return 'C'
if self.score < 80:
return 'B'
return 'A'
s = Student('Bob', 59)
print s.grade
s.score = 60
print s.grade
s.score = 99
print s.grade
网友评论