美文网首页
tensorflow自然语言处理-TF-IDF

tensorflow自然语言处理-TF-IDF

作者: 夜尽天明时 | 来源:发表于2017-06-06 17:18 被阅读0次

    写在前面

    • 态度决定高度!让优秀成为一种习惯!
    • 世界上没有什么事儿是加一次班解决不了的,如果有,就加两次!(- - -茂强)

    TF-IDF

    • 先看公式
    TF-IDF

    这个公式并不是一个很好的公式,一版的都用经过平滑的公司,避免分母为0的情况
    本文采用的是sklearn的默认公司

      tf-idf(d, t) = tf(t) * idf(d, t)
      idf(d, t) = log [ n / (df(d, t) + 1) ])
      # t就是词
    
    • 数据准备
      从文档中读取数据
      读取后的数据如下:
    文本数据 标签数据
    • 声明依赖以及静态参数
      import tensorflow as tf
      import matplotlib.pyplot as plt
      import re
      import numpy as np
      from sklearn.feature_extraction.text import TfidfVectorizer
      sess = tf.Session()
      batch_size= 200
      max_featurtes = 10000

    • 利用sklearn.feature_extraction.text中的TfidfVectorizer对文本进行向量化
      def tokenizer(text):
      words = text.split(" ")
      return words
      stop_words = set()
      tfidf = TfidfVectorizer(tokenizer=tokenizer,stop_words=stop_words,max_features=max_featurtes)
      sparse_tfidf_texts = tfidf.fit_transform(texts)

    • 把数据分成训练集和测试集
      train_indices = np.random.choice(sparse_tfidf_texts.shape[0],round(0.8*sparse_tfidf_texts.shape[0]), replace=False)
      test_indices = np.array(list(set(range(sparse_tfidf_texts.shape[0])) -set(train_indices)))
      texts_train = sparse_tfidf_texts[train_indices]
      texts_test = sparse_tfidf_texts[test_indices]
      target_train = np.array([x for ix, x in enumerate(target) if ix in train_indices])
      target_test = np.array([x for ix, x in enumerate(target) if ix in test_indices])

    • 定义逻辑回归模型的变量和placeholder
      A = tf.Variable(tf.random_normal(shape=[max_featurtes,1]))
      b = tf.Variable(tf.random_normal(shape=[1,1]))
      # Initialize placeholders
      x_data = tf.placeholder(shape=[None, max_featurtes], dtype=tf. float32)
      y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

    • 定义模型和损失函数
      model_output = tf.add(tf.matmul(x_data, A), b)
      loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=model_output, logits=y_target))

    • 定义预测方程和精确度计算
      prediction = tf.round(tf.sigmoid(model_output))
      predictions_correct = tf.cast(tf.equal(prediction, y_target),tf.float32)
      accuracy = tf.reduce_mean(predictions_correct)

    • 定义优化算法以及初始化变量
      my_opt = tf.train.GradientDescentOptimizer(0.05)
      train_step = my_opt.minimize(loss)
      # Intitialize Variables
      init = tf.initialize_all_variables()
      sess.run(init)

    • 开始训练模型
      train_loss = []
      test_loss = []
      train_acc = []
      test_acc = []
      i_data = []
      for i in range(10000):
      rand_index = np.random.choice(texts_train.shape[0],size=batch_size)
      rand_x = texts_train[rand_index].todense()
      rand_y = np.transpose([target_train[rand_index]])
      sess.run(train_step, feed_dict={x_data: rand_x, y_target:rand_y})
      # Only record loss and accuracy every 100 generations
      if (i+1)%100==0:
      i_data.append(i+1)
      train_loss_temp = sess.run(loss, feed_dict={x_data:rand_x, y_target: rand_y})
      train_loss.append(train_loss_temp)
      test_loss_temp = sess.run(loss, feed_dict={x_data: texts_test.todense(), y_target: np.transpose([target_test])})
      test_loss.append(test_loss_temp)
      train_acc_temp = sess.run(accuracy, feed_dict={x_data:rand_x, y_target: rand_y})
      train_acc.append(train_acc_temp)
      test_acc_temp = sess.run(accuracy, feed_dict={x_data:texts_test.todense(), y_target: np.transpose([target_test])})
      test_acc.append(test_acc_temp)
      if (i+1)%500==0:
      acc_and_loss = [i+1, train_loss_temp, test_loss_temp,train_acc_temp, test_acc_temp]
      acc_and_loss = [np.round(x,2) for x in acc_and_loss]
      print('Generation # {}. Train Loss (Test Loss): {:.2f}({:.2f}). Train Acc (Test Acc): {:.2f} ({:.2f})'.format(*acc_and_loss))
      其中每个批次喂给模型的数据如下图


      rand_x
    rand_y
    • 最后就是画出训练时的损失函数的计算结果图和精确度
      这里没有去调整参数,请读者自行调整参数进行训练,以达到更好的效果

      plt.figure(1) # 创建图表1
      x = [i for i in range(0, len(train_loss))]
      plt.plot(x, train_loss,"b-*")
      plt.plot(x, test_loss,"r-+")
      plt.figure(2) # 创建图表2
      x = [i for i in range(0, len(train_acc))]
      plt.plot(x, train_acc,"b-*")
      plt.plot(x, test_acc,"r-+")
      plt.show()
      
    loss acc

    相关文章

      网友评论

          本文标题:tensorflow自然语言处理-TF-IDF

          本文链接:https://www.haomeiwen.com/subject/nlzgfxtx.html