美文网首页
《背包九讲》笔记

《背包九讲》笔记

作者: 染微言 | 来源:发表于2017-03-29 17:18 被阅读560次

背包问题

题意:给出背包的容量,以及一批物品的价值和大小,求最大价值。

01背包问题

题意

每个物品只能放入一次。

思路

f[i][v]表示,第i个大小为v的物品放入时的总价值。
c[i]表示第i个物品的价值。w[i]为第i个物品的大小。
状态转移方程:f[i][v] = max(f[i-1][v], f[i-1][v-w[i]]+c[i]);
状态转移方程表示,取放入或者不放入第i个物品两种情况的最大值。

空间优化(滚动数组)

初始状态方程的空间复杂度是O(V*W),可以进一步优化。
可以将空间优化为O(2*W),即纵向大小为2。

for(i=1; i<=N; i++){
  for(j=t[i]; j<=V; j++)
    f[t^1][j] = max(f[c][j-w[i]]+c[i], f[t][j]);
  t ^= 1;
}

异或滚动可以在0和1之间切换,可以利用上下反复更新。

空间优化(一维数组)

既然可以用两行进行更新,那为什么不能用一行。
观察问题,两行更新时,用上一行的前部分更新下一行的后部分。
所以单行更新时要从后往前遍历,这样可以用前面的更新后面的。

for(i=1; i<=N; i++)
  for(j=V; j>=w[i]; j--)
    f[j] = max(f[j-w[i]]+c[i], f[j]);

这样就可以用一维数组来进行更新。
可以写成函数,封装起来。

void ZeroOnePack(int cost, int weight){
    for(int i=V; i>=weight; i++)
        f[i] = max(f[i], f[i-weight]+cost)
}

初始化的细节问题

一般问题会有两种问法:

  1. 刚好装满背包
  2. 不用装满背包
    如果是第一种,f[0]=0,f[1]……f[N]=INF;
    如果是第二种,f[0]……f[N]=INF;
    理解:
    如果是第一种,初始状态只有0符合理想状态,只有0才能被空“装满”。
    如果是第二种,所有都符合理想状态。

完全背包问题

题意

和01背包相似,所不同的是可取的物品数是无限。

前置小优化

对于i``j两个物品,如果c[i]>c[j] && w[i]<w[j],就舍去i物品。
另外,针对背包问题而言,比较不错的一种方法是:首先将重量大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。

基本思路

状态转移方程f[i][v]=max{f[i-1][v-k*w[i]]+k*c[i]},(0<=k*w[i]<=V)

转化为01背包求解

一件物品最多只能放V/c[i]件,所以可以把一件物品,看成V/c[i]件物品,作为01背包解答。
另一种更好的办法是把第i种物品拆成大小为w[i]*2^k、价值为c[i]*2^k的若干件物品,其中k满足w[i]*2^k<=V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/w[i]))件物品,是一个很大的改进。

O(VN)算法

for(int i=1; i<=N; i++)
    for(int j=w[i]; j<=V; j++)
        f[j] = max{f[v], f[v-w[i]]+c[i]};

这个算法和之前的01背包相比只是第二层的遍历方向改变了。因为01背包要保证每个物品只能选择一次,但是完全背包不必,所以改变遍历方向就可以得到结果。
这个算法也可以从另外的思路中得出,例如,基本思路中的公式可以化作这个形式:f[i][v]=max(f[i-1][v], f[i][v-w[i]]+c[i]);
用函数封装:

void CompletePack(int cost, int weight){
    for(int i=weight; i<=V; i++)
        f[i] = max(f[i], f[i-weight]+cost);
}

多重背包问题

题意

每件物品数量不一定为1但有限。

基本思路

问题和完全背包很相似。
f[i][v]=max{f[i-1][v-k*c[i]]+k*w[I]}(0<=k<=n[I])
复杂度为O(V*Σn[i])

转化为01背包问题

n[i]存储,可以将每种物品转化为n[i]件物品,然后用01背包方案求解。复杂度不变。
如果要进行优化的话,依然用二进制思想,同上。
这样可以将时间优化为O(V*Σlog n[i])

void MultiplePack(int weight, int cost, int amount){
    if(cost * amount >= V){
        CompletePack(cost, weight);
        return;
    }
    int k = 1;
    while(k < num){// num 为物品种数
        ZeroOnePack(k*cost, k*weight);
        amount = amount-k;
        k *= 2;
    }
    ZeroOnePack(amount*cost, amount*weight);
}

相关文章

  • 《背包九讲》笔记

    背包问题 题意:给出背包的容量,以及一批物品的价值和大小,求最大价值。 01背包问题 题意 每个物品只能放入一次。...

  • DP专题整理

    简单DP 背包问题 《背包九讲》笔记 G - 免费馅饼 HDU - 1176 题意 小明初始站在长度为10的数轴上...

  • 转——背包问题

    背包问题九讲

  • 背包九讲之01背包

    给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。问:应该如何选择装入背包的物...

  • 背包

    背包问题九讲笔记_01背包背包问题是动态规划中最基本的题目。 动态规划的4步骤:1.找出子结构2.递归3.自底而上...

  • 背包九讲+读后笔记+C++实现

    先是原文复制: P01: 01背包问题题目有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i...

  • 背包九讲——Java详解

    01背包问题 每个物品只有选和不选两种状态 完全背包问题 每个物品可以无限次选 多重背包问题 I 物品个数有数量限...

  • 背包九讲系列1——01背包、完全背包、多重背包

    我在进行一些互联网公司的技术笔试的时候,对于我来说最大的难题莫过于最后的那几道编程题了,这对算法和数据结构有一定程...

  • 01背包和完全背包

    最近学习《背包问题九讲》,对0-1背包和完全背包有了新的认识。最新版本请访问 https://github.com...

  • 背包九讲系列3——依赖背包、泛化物品、背包变形

    终于来到最后一个系列了,整个系列下来发现大神的总结和思考就是那么的厉害,自己能在这里学习和了解不同的思维方式并能运...

网友评论

      本文标题:《背包九讲》笔记

      本文链接:https://www.haomeiwen.com/subject/nmhyottx.html