美文网首页
【机器学习】-Week2 3. 梯度下降实践2-学习速率

【机器学习】-Week2 3. 梯度下降实践2-学习速率

作者: Kitty_风花 | 来源:发表于2019-11-30 10:49 被阅读0次

    Gradient Descent in Practice II - Learning Rate

    Debugging gradient descent. Make a plot with number of iterations on the x-axis. Now plot the cost function, J(θ) over the number of iterations of gradient descent. If J(θ) ever increases, then you probably need to decrease α.

    Automatic convergence test. Declare convergence if J(θ) decreases by less than e in one iteration, where e is some small value such as 10^−3. However in practice it's difficult to choose this threshold value.

    It has been proven that if learning rate α is sufficiently small, then J(θ) will decrease on every iteration.

    To summarize:

    If α is too small: slow convergence.

    If α is too large: may not decrease on every iteration and thus may not converge.

    来源:coursera 斯坦福 吴恩达 机器学习

    相关文章

      网友评论

          本文标题:【机器学习】-Week2 3. 梯度下降实践2-学习速率

          本文链接:https://www.haomeiwen.com/subject/nodsjctx.html