什么是 Jupyter Notebook?
按照 Jupyter 创始人 Fernando Pérez 的说法,他最初的梦想是做一个综合 Ju (Julia)、Py (Python)和 R 三种科学运算语言的计算工具平台,所以将其命名为 Ju-Py-te-R。发展到现在,Jupyter 已经成为一个几乎支持所有语言,能够把软件代码、计算输出、解释文档、多媒体资源整合在一起的多功能科学运算平台。
Jupyter Notebook 的影响力
从 2017 年开始,已有大量的北美顶尖计算机课程,开始完全使用 Jupyter Notebook 作为工具。再如 UC Berkeley 的《数据科学基础》课程,从 17 年起,所有作业也全部用 Jupyter Notebook 完成。
而 Jupyter Notebook 在工业界的影响力更甚。在 Facebook,虽然大规模的后台开发仍然借助于功能齐全的 IDE,但是几乎所有的中小型程序都是借助于 Jupyter Notebook 完成的。据我了解,在别的硅谷一线大厂,例如 Google 的 AI Research 部门 Google Brain,也是清一色地全部使用 Jupyter Notebook,虽然用的是他们自己的改进定制版,叫 Google Colab。
Jupyter 的优点
整合所有的资源
Jupyter 通过把所有和软件编写有关的资源全部放在一个地方,当你打开一个 Jupyter Notebook 时,就已经可以看到相应的文档、图表、视频和相应的代码。这样,你就不需要切换窗口去找资料,只要看一个文件,就可以获得项目的所有信息。
交互性编程体验
Jupyter Notebook 引进了 Cell 的概念,每次实验可以只跑一小个 Cell 里的代码;并且,所见即所得,在代码下面立刻就可以看到结果。这样强的互动性,让 Python 研究员可以专注于问题本身,不被繁杂的工具链所累,不用在命令行直接切换,所有科研工作都能在 Jupyter 上完成。
零成本重现结果
同样在机器学习和数学统计领域,Python 的使用是非常短平快的。
相关推荐
第一个是 Jupyter 官方:https://mybinder.org/v2/gh/binder-examples/matplotlib-versions/mpl-v2.0/?filepath=matplotlib_versions_demo.ipynb第二个是 Google Research 提供的 Colab 环境,尤其适合机器学习的实践应用:https://colab.research.google.com/notebooks/basic_features_overview.ipynb如果你想在本地或者远程的机器上安装 Jupyter Notebook,可以参考下面的两个文档。安装:https://jupyter.org/install.html运行:https://jupyter.readthedocs.io/en/latest/running.html#running
网友评论