美文网首页
poj2191 pollard-rho大数分解质因子+Mille

poj2191 pollard-rho大数分解质因子+Mille

作者: 暖昼氤氲 | 来源:发表于2019-12-11 16:09 被阅读0次
    /*
    Time:2019.12.11
    Author: Goven
    type:pollard-rho大数分解质因子+Miller_Rabin判断质数
    ref:
    */
    #include<iostream>
    #include<ctime>
    #include<cstdlib>
    #include<algorithm> 
    using namespace std;
    typedef long long ll;
     
    int cnt = 0;
    ll factor[1000];
    
    ll Mult_mod (ll a, ll b, ll mod) {//大数乘法 
        a %= mod;
        b %= mod;
        ll res = 0;
        while (b) {
            if (b & 1) res = (res + a) % mod;
            a = (a << 1) % mod;
            b >>= 1;
        }
        return res;
    }
    
    ll pow_mod (ll a, ll b, ll mod) {
        a %= mod;
        ll res = 1;
        while (b) {
            if (b & 1) res = Mult_mod(res, a, mod);
            a = Mult_mod(a, a, mod);
            b >>= 1;
        }
        return res;
    }
    
    bool Check (ll a, ll x, ll t, ll mod) {//二次探测判断是否为合数 
        a = pow_mod(a, x, mod); 
        ll last;
        for (int i = 0; i < t; i++) {
            last = a;
            a = Mult_mod(a, a, mod);
            if (a == 1 && last != 1 && last != mod - 1) return true;
        }
        if (a != 1) return true;
        return false;
    } 
    
    bool Miller_Rabin (ll n, int k) {//Miller_Rabin判断素数 
        if (n < 2) return false;
        if (n == 2) return true;
        if (n & 1 == 0) return false;//step1:粗筛
        //step2:二次探测
        ll t = 0, x = n - 1;//att1: x这里的赋值别忘了减1 
        while (x & 1 == 0) x >>= 1, t++;  
        for (int i = 0; i < k; i++) {
            ll a = rand() % (n - 1) + 1;
            if (Check(a, x, t, n))
                return false; 
        }
        return true;
    }
    
    ll gcd (ll a, ll b) {
        if (a < 0) return gcd(-a, b);
        return b ? gcd(b, a % b) : a;
    }
    
    ll f (ll x, ll c, ll mod) {//生成随机数:f(x) = (x * x + c) % mod 
        return (Mult_mod(x, x, mod) + c) % mod; 
    }
    
    ll Pollard_rho (ll n, ll c) {//Pollard_rho找到n的某个因子 
        ll a = rand() % n;
        ll b = a;
        ll i = 1, k = 2;
        while (1) {
            i++;
            a = f(a, c, n);
            ll d = gcd(a - b, n);
            if (d != 1 && d != n) return d;
            if (a == b) return n;//到了随机数的循环节
            if (i == k) {
                b = a;
                k += k;
            } 
        }
    }
    void findFac (ll n) {//求解n的素因子
        if (Miller_Rabin(n, 5)) {
            factor[cnt++] = n;
            return;
        } 
        ll p = n;
        while (p >= n) p = Pollard_rho(p, (ll)rand() % (n - 1) + 1);
        findFac(p);
        findFac(n / p); 
    }
    
    bool isPrime (int x) {
        for (int i = 2; i <= x >> 1; i++) {
            if (x % i == 0) return false;
        }
        return true;
    }
    int main()
    {
        srand(time(NULL));
        
        int k;
        cin >> k;
        ll n;
        
        for (int i = 2; i <= k; i++) {
            if (!isPrime(i)) continue;
            n = ((ll)1 << i ) - 1;//err1:1前面要加(ll) 
            cnt = 0;
            findFac(n); 
            if (cnt == 1) continue;
            sort(factor, factor + cnt);
            printf("%lld", factor[0]);
            for (int j = 1; j < cnt; j++) {
                printf(" * %lld", factor[j]);
            }
            printf(" = %lld = ( 2 ^ %d ) - 1\n", n, i);
        }
        
        return 0;
    }
    
    

    相关文章

      网友评论

          本文标题:poj2191 pollard-rho大数分解质因子+Mille

          本文链接:https://www.haomeiwen.com/subject/nozogctx.html