美文网首页
pytest测试框架-数据驱动 yaml/excel/csv/j

pytest测试框架-数据驱动 yaml/excel/csv/j

作者: 吱吱菌啦啦 | 来源:发表于2022-04-19 18:00 被阅读0次
数据驱动:数据的改变从而驱动自动化测试用例的执行,最终引起测试结果的改变。简单说就是参数化的应用。

测试驱动在自动化测试中的应用场景:

  • 测试步骤的数据驱动;
  • 测试数据的数据驱动;
  • 配置的数据驱动;
1、pytest结合数据驱动-yaml

实现读yaml文件,先创建env.yml文件配置测试数据

工程目录结构:
  • data目录:存放yaml文件
-
  dev: 127.0.0.1
  #dev: 127.0.0.2
  #prod: 127.0.0.3
  • testcase目录:存放测试用例文件
import pytest
import yaml

class TestYaml:
    @pytest.mark.parametrize("env", yaml.safe_load(open("./env.yml")))
    def test_yaml(self, env):
        if "test" in env:
            print("这是测试环境")
            # print(env)
            print("测试环境的ip是:", env["test"])
        elif "dev" in env:
            print("这是开发文件")
            print("开发环境的ip是:", env["dev"])
            # print(env)

结果示例:


image.png
2、pytest结合数据驱动-excel

常用的读取方式有:xlrd、xlwings、pandas、openpyxl

以读excel文件,实现A+B=C并断言为例~
工程目录结构:
  • data目录:存放excel数据文件


    image.png
  • func目录:存放被测函数文件
def my_add(x, y):
    result = x + y
    return result
  • testcase目录:存放测试用例文件
import openpyxl
import pytest
from test_pytest.read_excel.func.operation import my_add

def test_get_excel():
    """
    解析excel数据
    :return: [[1,1,2],[3,6,9],[100,200,300]]
    """
    book = openpyxl.load_workbook('../data/param.xlsx')
    sheet = book.active
    cells = sheet["A1":"C3"]
    print(cells)
    values = []
    for row in sheet:
        data = []
        for cell in row:
            data.append(cell.value)
        values.append(data)
    print(values)
    return values

class TestWithExcel:
    @pytest.mark.parametrize('x,y,expected', test_get_excel())
    def test_add(self, x, y, expected):
        assert my_add(int(x), int(y)) == int(expected)
3、pyetst结合数据驱动-csv
csv:逗号文件,以逗号分隔的string文件
读取csv数据:
  • 内置函数open()
  • 内置模块csv
  • 方法:csv.reader(iterable)
  • 参数:iterable,文件或列表对象
  • 返回:迭代器,遍历迭代器,每次会返回一行数据
以读csv文件,实现A+B=C并断言为例~
工程目录结构:
  • data目录:存放csv数据文件


    image.png
  • func目录:存放被测函数文件
def my_add(x, y):
    result = x + y
    return result
  • testcase目录:存放测试用例文件
import csv
import pytest

from test_pytest.read_csv.func.operation import my_add

def test_get_csv():
    """
    解析csv文件
    :return:
    """
    with open('../data/params.csv') as file:
        raw = csv.reader(file)
        data = []
        for line in raw:
            data.append(line)
    print(data)
    return data

class TestWithCsv:
    @pytest.mark.parametrize('x,y,expected', test_get_csv())
    def test_add(self, x, y, expected):
        assert my_add(int(x), int(y)) == int(expected)
4、pytest结合数据驱动-json
json:js对象,是一种轻量级的数据交换格式。
json结构:
  • 对象{"key":value}
  • 数组[value1,value2...]
查看json文件:
  • 1.pycharm
  • 2.txt记事本
读取json文件:
  • 内置函数open()
  • 内置库json
  • 方法 json.loads() json.dumps()
以读json文件,实现A+B=C并断言为例~
工程目录结构:
  • data目录:存放json数据文件


    image.png
  • func目录:存放被测函数文件
def my_add(x, y):
    result = x + y
    return result
  • testcase目录:存放测试用例文件
import json
import pytest
from test_pytest.read_json.func.operation import my_add

def test_get_json():
    """
    解析json数据
    :return: [[1,1,2],[3,6,9],[100,200,300]]
    """
    with open('../data/params.json', 'r') as file:
        data = json.loads(file.read())
        print(list(data.values()))
        return list(data.values())

class TestWithJson:
    @pytest.mark.parametrize('x,y,expected', test_get_json())
    def test_add(self, x, y, expected):
        assert my_add(int(x), int(y)) == int(expected)

相关文章

网友评论

      本文标题:pytest测试框架-数据驱动 yaml/excel/csv/j

      本文链接:https://www.haomeiwen.com/subject/nrteertx.html