美文网首页
晴神の模拟 | 多源点、汇点的AOE关键路径

晴神の模拟 | 多源点、汇点的AOE关键路径

作者: zilla | 来源:发表于2019-09-25 21:19 被阅读0次

    第一次写关键路径的题,交上去直接AC爽爆!!!然而现在简书发不出去,偷偷爽一下吧😁

    1020 | 万妖瞬击

    思路

    多源点、多汇点,求关键路径。

    • 关键路径基本思路见拓扑排序(删边/DFS)➕AOE网关键路径

    • 别忘了初始化early、late数组

      • early是最小值中取最大,初始化为-1。
      • late是最大值中取最小,初始化为INF。
    • 在输入边的时候,统计出入度,出 = 0的为汇点,入= 0的为源点。

    • 拓扑排序,queue存拓扑序,stack存逆拓扑序。

    • 将源点的early都置为0,按拓扑序计算v_early,并得到最大的v_early(关键路径长度)。

    • ⚠️按逆拓扑序计算v_late。

      • 将early最大的汇点的late也设为同样的值。其他汇点的late需计算。
      • 遍历graph[curr][i]更新v_late对汇点无效,应该加一行v_late[curr] = min(max_path_weight, v_late[curr);
      • ❌将汇点的late都设为与early相等❌。这条不对,做下面一题发现的,此处代码没有改= =。
    • 计算所有边的early和late,若边的early == late,这条边是关键路径上的边,放到关键路径图cg上。(代码里写的是反向存边,没必要 = =)

    • dfs求关键路径,path是当前路径,vector<vector<int>> critical_paths是所有关键路径的集合。
      push_back, pop_back维护path,若到达early为0的点(源点),则push_back(path)到关键路径集合中。

    • reverse每条path再排序,输出即可。

    #include <cstdio>
    #include <algorithm>
    #include <map>
    #include <stack>
    #include <queue>
    #include <vector>
    
    #define INF 0x3fffffff
    using namespace std;
    int nn, mm;
    int graph[1001][1001], in_deg[1001] = {0}, out_deg[1001] = {0};
    int v_early[1001], v_late[1001]; // init: -1, INF
    map<pair<int, int>, pair<int, int>> edge_early_late; // init
    queue<int> topo;
    stack<int> rv_topo;
    vector<int> srcs, targets, cg[1001]; // reverse_graph with only critical activities
    int max_path_len = -1;
    vector<int> path;
    vector<vector<int>> critical_paths;
    
    int topoSort() {
        int res = 0;
        bool in_topo[1001] = {false};
        while (res < nn) {
            int curr = -1;
            for (int i = 0; i < nn; ++i) {
                if (!in_topo[i] && in_deg[i] == 0) {
                    curr = i;
                    break;
                }
            }
            if (curr == -1) return res;
            in_topo[curr] = true;
            topo.push(curr);
            rv_topo.push(curr);
            res++;
            for (int i = 0; i < nn; i++) {
                if (graph[curr][i] != INF)
                    in_deg[i]--;
            }
        }
        return nn;
    }
    
    void calc_V_early() { // topo
        while (!topo.empty()) {
            int curr = topo.front();
            topo.pop();
            for (int k = 0; k < nn; k++) {
                if (graph[k][curr] != INF) {
                    v_early[curr] = max(v_early[curr], v_early[k] + graph[k][curr]);
                }
            }
            max_path_len = max(max_path_len, v_early[curr]);
        }
    }
    
    void calc_V_late() {
        for (auto item: targets)
            v_late[item] = v_early[item];
        while (!rv_topo.empty()) {
            int curr = rv_topo.top();
            rv_topo.pop();
            for (int i = 0; i < nn; ++i) {
                if (graph[curr][i] != INF) {
                    v_late[curr] = min(v_late[curr], v_late[i] - graph[curr][i]);
                }
            }
        }
    }
    
    void calc_E_early_late() {
        for (auto &item: edge_early_late) {
            item.second.first = v_early[item.first.first];
            item.second.second = v_late[item.first.second]
                                 - graph[item.first.first][item.first.second];
            if (item.second.first == item.second.second)
                cg[item.first.second].push_back(item.first.first);
        }
    }
    
    void dfs_critical_path(int root) {
        if (v_early[root] == 0) {
            path.emplace_back(root);
            critical_paths.emplace_back(path);
            path.pop_back();
            return;
        }
        path.emplace_back(root);
        for (auto &item: cg[root]) {
            dfs_critical_path(item);
        }
        path.pop_back();
    }
    
    int main() {
        scanf("%d%d", &nn, &mm);
        fill(graph[0], graph[0] + 1001 * 1001, INF);
        fill(v_early, v_early + 1001, -1);
        fill(v_late, v_late + 1001, INF);
        int v1, v2, weight;
        for (int i = 0; i < mm; ++i) {
            scanf("%d%d%d", &v1, &v2, &weight);
            graph[v1][v2] = weight;
            edge_early_late[make_pair(v1, v2)] = make_pair(0, 0);
            in_deg[v2]++;
        }
        for (int i = 0; i < nn; ++i) {
            if (in_deg[i] == 0) {
                srcs.emplace_back(i);
                v_early[i] = v_late[i] = 0;
            }
            if (out_deg[i] == 0) targets.emplace_back(i);
        }
        int topo_len = topoSort();
        if (topo_len < nn) {
            printf("NO %d", nn - topo_len);
        } else {
            calc_V_early();
            calc_V_late();
            calc_E_early_late();
            printf("YES %d\n", max_path_len);
            for (auto &item: targets) {
                if (v_early[item] == max_path_len) {
                    dfs_critical_path(item);
                }
            }
            for (auto &item: critical_paths)
                reverse(item.begin(), item.end());
            sort(critical_paths.begin(), critical_paths.end());
            for (auto &i1: critical_paths) {
                int len = i1.size();
                for (int r = 0; r < len; r++) {
                    printf("%d", i1[r]);
                    printf(r == len - 1 ? "\n" : "->");
                }
            }
        }
        return 0;
    }
    

    1044 | 关键路径

    注意点还是上面提过的那些。
    ⚠️⚠️auto遍历修改了容器内的值,必须!一定!要加&引用for (auto &item:edges_el)

    • 这次没有智障的反向存边= = ,正常的存了边(只保留关键活动的新图),然后dfs……
      新的边用map<int, set<int>> next存的话就能保证顺序,不用全部遍历完后排序了。。
    #include <cstdio>
    #include <map>
    #include <vector>
    #include <unordered_set>
    #include <algorithm>
    
    #define INF 0x3fffffff
    using namespace std;
    int nn, graph[1001][1001], in_deg[1001] = {0}, out_deg[1001] = {0}, v_early[1001], v_late[1001], max_path_weight = -1;
    map<pair<int, int>, pair<int, int>> edges_el; //edge v1->v2 early, late
    vector<vector<int>> paths;
    vector<int> topo_seq, critical_graph[1001], temp_path;
    unordered_set<int> srcs, targets;
    
    bool topoSort() {
        bool inSeq[1001] = {false};
        for (int i = 0; i < nn; ++i) {
            int curr = -1;
            for (int j = 1; j <= nn; j++) {
                if (!inSeq[j] && in_deg[j] == 0) curr = j;
            }
            if (curr == -1) return false;
            inSeq[curr] = true;
            topo_seq.push_back(curr);
            for (int j = 1; j <= nn; ++j) {
                if (!inSeq[j] && graph[curr][j] != INF)
                    in_deg[j]--;
            }
        }
        return true;
    }
    
    void calc_v_early() {
        for (int i = 0; i < nn; ++i) {
            int curr = topo_seq[i];
            for (int j = 1; j <= nn; ++j) {
                if (graph[j][curr] != INF)
                    v_early[curr] = max(v_early[curr], v_early[j] + graph[j][curr]);
            }
            max_path_weight = max(max_path_weight, v_early[curr]);
        }
    }
    
    void calc_v_late() {
        for (auto item: targets) {
            if (v_early[item] == max_path_weight) v_late[item] = max_path_weight;
        }
        for (int i = nn - 1; i >= 0; --i) {
            for (int j = 1; j <= nn; ++j) {
                if (graph[topo_seq[i]][j] != INF)
                    v_late[topo_seq[i]] = min(v_late[topo_seq[i]], v_late[j] - graph[topo_seq[i]][j]);
            }
            v_late[topo_seq[i]] = min(max_path_weight, v_late[topo_seq[i]]);
        }
    }
    
    void calc_e_el() {
        for (auto &item:edges_el) {
            item.second.first = v_early[item.first.first];
            item.second.second = v_late[item.first.second] - graph[item.first.first][item.first.second];
            if (item.second.first == item.second.second)
                critical_graph[item.first.first].push_back(item.first.second);
        }
    }
    
    // 一定无环
    void DFS(int root) {
        if (critical_graph[root].empty()) {
            if (v_early[root] == max_path_weight) {
                temp_path.push_back(root);
                paths.push_back(temp_path);
                temp_path.pop_back();
            }
        }
        temp_path.push_back(root);
        for (auto item:critical_graph[root]) DFS(item);
        temp_path.pop_back();
    }
    
    int main() {
        int mm, v1, v2, tw;
        scanf("%d%d", &nn, &mm);
        fill(graph[0], graph[0] + 1001 * 1001, INF);
        fill(v_early, v_early + 1001, -1);
        fill(v_late, v_late + 1001, INF);
        for (int i = 0; i < mm; ++i) {
            scanf("%d%d%d", &v1, &v2, &tw);
            graph[v1][v2] = tw;
            in_deg[v2]++;
            out_deg[v1]++;
            edges_el[make_pair(v1, v2)] = make_pair(0, 0);
        }
        for (int i = 1; i <= nn; i++) {
            if (in_deg[i] == 0) {
                v_early[i] = 0;
                srcs.insert(i);
            }
            if (out_deg[i] == 0)
                targets.insert(i);
        }
        bool flag = topoSort();
        if (flag) {
            puts("YES");
            calc_v_early();
            calc_v_late();
            calc_e_el();
        }
        int nq;
        scanf("%d", &nq);
        for (int j = 0; j < nq; ++j) {
            scanf("%d%d", &v1, &v2);
            if (flag) printf("%d %d\n", edges_el[make_pair(v1, v2)].first, edges_el[make_pair(v1, v2)].second);
        }
        if (flag) {
            printf("%d\n", max_path_weight);
            for (auto item: srcs)
                DFS(item);
            sort(paths.begin(), paths.end());
            for (auto &item: paths) { // output path
                int len = item.size();
                for (int i = 0; i < len; ++i) {
                    printf("%d", item[i]);
                    printf(i + 1 == len ? "\n" : "->");
                }
            }
        }
        if (!flag) puts("NO");
        return 0;
    }
    

    相关文章

      网友评论

          本文标题:晴神の模拟 | 多源点、汇点的AOE关键路径

          本文链接:https://www.haomeiwen.com/subject/nrvryctx.html