美文网首页嵌牛IT观察
2017年含金量最高的机器学习技能或知识有哪些?

2017年含金量最高的机器学习技能或知识有哪些?

作者: dogko | 来源:发表于2017-10-25 08:18 被阅读0次

姓名:韩卓成

转载自:http://blog.csdn.net/dev_csdn/article/details/78294967

【嵌牛导读】:机器学习是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。那么在人工智能极其火热的2017年,机器学习要求哪些技能?该文章内容来自Quora。2017年,哪些机器学习领域的知识技能最具有价值?

【嵌牛鼻子】:ML的重要技能。

【嵌牛提问】:作为一门交叉学科的重灾区,机器学习究竟要求哪些技能?

【嵌牛正文】:技能#1:编程

这也许是数据科学家必备的最基本的技能——数据科学家的工作要比传统统计学家的工作实际的多。编程在许多方面都很重要,包括以下三点:

编程能增强你做数据统计的能力。如果你有一大堆统计数据,但却没有办法去处理,那么你的统计知识将无用武之地。

编程能使你有分析大型数据集的能力。你在业界工作的数据集并不像样本iris数据集(Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。)那么小可爱,你能轻松获得数以百万计甚至更多的数据。

通过编程,你可以创建更好的数据处理工具。这包括建立数据的可视化系统,创建自动分析实验的框架,以及管理公司的数据流,以便所需的数据可以手到擒来。

技能#2:定量分析

定量分析是数据科学家必备的核心技能。数据科学的大部分内容是通过分析自然科学和实验所产生的数据来理解一个特别复杂的科学系统的行为。定量分析技能在许多方面都很重要,包括以下三点:

试验设计和分析:特别是对从事消费互联网应用的数据科学家—数据记录的方式和实验的运行方式,为大量的实验测试各种假设提供了途径。实验分析是很可能出错的(这一点可以询问任何统计学家),因此,在这方面,数据科学家可以提供很多帮助。

复杂型经济/增长系统建模:一些经典建模是较为常见的,如客户流失模型或客户终身价值模型。更复杂的建模,如供应和需求建模,匹配供应商和供应商之间经济最优方法,以及建模公司的增长渠道,来更好的量化分析哪些增长途径最有价值。最著名的例子是Uber的价格飙升建模。

机器学习:即使没有实现机器学习模型,对于数据科学家来说,他们也可以提供帮助创建原型来测试假设,选择和创造的功能,以及判定现有机器学习系统中的优势和在该领域的机会。

哪些数据科学领域的人员对这项技能最有需求呢?1。物理学家2。统计学家3。经济学家4。运筹学家5。更多,他们非常习惯通过自上而下的方法(模型)或自下而上的方法来理解复杂的系统(数据推断)。

技能#3:产品直觉

产品直觉是一种技能,它与数据科学家对系统进行定量分析的能力有关。产品知识意味着要理解生成数据科学家分析的所有数据的复杂系统。这个技能的重要性体现在:

产生假设:一个非常了解产品的数据科学家可以用一种特定的方式改变系统的行为方式。假设是基于“预感”关于系统的某些方面如何表现,你需要知道系统对它是如何工作的有预感。

定义度量标准:传统的分析技能集包括确定公司可以用来跟踪特定目标成功的主要和次要指标。数据科学家需要了解产品,以便创建两个产品指标:1。衡量意图2。衡量具有推动价值的东西。

调试分析:“难以置信”的结果常常是由于系统的“令人难以置信”的特性而引起的。良好的产品知识有助于提升产品检查速度,帮助更快地识别出可能出错的东西。

产品知识通常包括使用公司创造的产品。如果那是不可能的,那么至少试着去了解那些实际使用产品的人。

技能#4:沟通能力

这项技能很重要,有助于显著提高上述所有技能的影响力。这一点特别重要,是区别好的数据科学家和伟大的数据科学家的重要标准。良好的沟通可以以多种方式体现,包括:

沟通见解:一些数据科学家将其称之为“讲故事”。这里最重要的是以清晰、简明和有效的方式交流见解,以便公司中的其他人能够有效地理解这些见解。

数据可视化呈现:一幅清楚明晰的图表胜过千言万语。

总体沟通:作为一名数据科学家,几乎总是意味着作为一个团队在工作,包括与工程师、设计师、产品经理、运营人员以及更多的角色合作。良好的总体沟通有助于促进信任和理解,对于被委托管理数据的人来说,这是极其重要的。

技能#5:团队合作

最后这项技能将以上4个技能连接起来。特别是数据科学家不能孤立地存在,要依靠团队工作。从我所看到的,数据科学家深入到公司的方方面面(或者至少存在于产品开发组织中)时,结果做得最好。

团队合作之所以重要,有很多原因,包括:

无私:这包括为他人提供帮助和指导,并将公司的使命放在自己的个人职业生涯野心之上。

不断迭代:数据科学家重视反馈,他们的大部分工作都需要与其他人进行反复迭代和反馈,以达成有影响力的解决方案。

与他人分享知识:由于数据科学职业是一个新近出现的工作,基本上没有人具备完整的技能,尤其是当你需要收集所有可能有用的统计技术、框架、库、语言和工具时。由于知识可能分散在不同数据科学家及其组织中,因此对于数据科学家来说,不断地分享他们的知识、方法和成果尤其有用。

相关文章

  • 2017年含金量最高的机器学习技能或知识有哪些?

    姓名:韩卓成 转载自:http://blog.csdn.net/dev_csdn/article/details/...

  • Python机器学习和常见算法

    Python机器学习 学习意味着通过学习或经验获得知识或技能。基于此,我们可以定义机器学习(ML)如下 - 它可以...

  • 机器学习路线

    机器学习路线图 摘要: 机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结...

  • 神经网络和深度学习(吴恩达 Andrew Ng):一二周学习笔记

    机器学习:机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构使之不断改善...

  • 1.机器学习基础

    1、机器学习定义: 专门研究计算机怎么模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构(利用...

  • 机器学习

    01 机器学习 专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改...

  • 考霸秘籍3:掌握高效学习法,掌握知识&技能的诀窍的1-4问答逐字

    今天做了考霸秘籍3:掌握高效学习法,掌握知识技能的学习诀窍知识问答1~4的逐字稿,发现知识问答的含金量也非常...

  • 机器学习的常用方法

    什么是机器学习 专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改...

  • 这种知识含金量最高 !

    最近在阅读关于“学习力”的主题阅读。 这个水很深,手机上和书籍有太多的资料选择。 慢慢的从无序到重点抓再到实践的阶...

  • 机器学习

    机器学习百度百科:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断...

网友评论

    本文标题:2017年含金量最高的机器学习技能或知识有哪些?

    本文链接:https://www.haomeiwen.com/subject/nsbfpxtx.html