美文网首页
ThreadPoolExecutor 源码浅析(一)

ThreadPoolExecutor 源码浅析(一)

作者: WJL3333 | 来源:发表于2018-03-03 17:45 被阅读11次

这篇主要以代码分析为主,文中的代码有注释进行解析.

1.Executor接口

public interface Executor {

    /**
     * Executes the given command at some time in the future.  The command
     * may execute in a new thread, in a pooled thread, or in the calling
     * thread, at the discretion of the {@code Executor} implementation.
     *
     * @param command the runnable task
     * @throws RejectedExecutionException if this task cannot be
     * accepted for execution
     * @throws NullPointerException if command is null
     */
    void execute(Runnable command);
}

只提供了一个execute方法作为任务执行的抽象

  1. ExecutorService接口

ExecutorService接口继承了Executor接口增加了一些

  • 生命周期相关方法
    • void shutdown();
    • List<Runnable> shutdownNow();
    • ....
  • 任务提交方法
    • <T> Future<T> submit(Callable<T> task);
    • <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException;
    • ...

3.AbstractExecutorService抽象类

该抽象类只是实现了一些任务提交方法。生命周期相关方法和execute方法留给实现类自己实现

1.newTaskFor 提供了一个便捷方法来方便调用

protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        return new FutureTask<T>(callable);
    }

2.submit 实际操作还是调用了execute方法

public <T> Future<T> submit(Callable<T> task) {
    if (task == null) throw new NullPointerException();
    RunnableFuture<T> ftask = newTaskFor(task);
    execute(ftask);
    return ftask;
}

3.invokeAll

public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
        throws InterruptedException {
        if (tasks == null)
            throw new NullPointerException();
        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
        boolean done = false;
        try {
          //将任务全部提交到线程池
            for (Callable<T> t : tasks) {
                RunnableFuture<T> f = newTaskFor(t);
                futures.add(f);
                execute(f);
            }
          //阻塞直到所有任务完成
            for (int i = 0, size = futures.size(); i < size; i++) {
                Future<T> f = futures.get(i);
                if (!f.isDone()) {
                    try {
                        f.get();
                    } catch (CancellationException ignore) {
                    } catch (ExecutionException ignore) {
                    }
                }
            }
            done = true;
          //返回的Future都是可以马上得到结果的
            return futures;
        } finally {
          //execute方法会抛出异常,如果没有结束则所有任务取消。
            if (!done)
                for (int i = 0, size = futures.size(); i < size; i++)
                    futures.get(i).cancel(true);
        }
    }
  1. ThreadPoolExecutor

该类继承了抽象类AbstractExecutorService

4.1 状态控制

内部使用了一个AtomicInteger来保存生命周期相关的信息和线程数信息。

使用一个Integer前3位来表示Executor的生命周期状态。

后29位来表示工作线程数。

    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

生命周期

RUNNING
接收任务并处理队列中的任务

SHUTDOWN
不接受新任务但是处理工作队列中的任务

STOP
不接受新任务不处理工作队列中的任务,而且中断正在运行的任务线程

TIDY
所有任务都已经终止,工作线程为0,将要运行terminated方法

TERMINATED
terminated()方法返回

4.2 一些volatile变量

volatile 变量使用条件

1.对变量的写入不依赖变量的当前值,或者能保证只有一个变量能更新该变量的值

2.变量的改变不会影响其他变量的状态

3.(那么)该变量的使用就不需要加锁

    /*
     * All user control parameters are declared as volatiles so that
     * ongoing actions are based on freshest values, but without need
     * for locking, since no internal invariants depend on them
     * changing synchronously with respect to other actions.
     */
    private volatile ThreadFactory threadFactory;

    private volatile RejectedExecutionHandler handler;

    private volatile long keepAliveTime;

    private volatile boolean allowCoreThreadTimeOut;

    private volatile int corePoolSize;

    private volatile int maximumPoolSize;

4.3 Worker

封装了线程池的线程。

继承了AbstractQueuedSynchronizer实现了一个不可重入的派他锁。

并拥有一个管理线程终端状态的方法,该方法避免了为了唤醒等待任务的线程而中断一个正在执行的任务。

private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this); //下面会说到这个方法。4.8
        }

        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.

        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

4.4 设置线程池状态的方法

/**
     * Transitions to TERMINATED state if either (SHUTDOWN and pool
     * and queue empty) or (STOP and pool empty).  If otherwise
     * eligible to terminate but workerCount is nonzero, interrupts an
     * idle worker to ensure that shutdown signals propagate. This
     * method must be called following any action that might make
     * termination possible -- reducing worker count or removing tasks
     * from the queue during shutdown. The method is non-private to
     * allow access from ScheduledThreadPoolExecutor.
     */
final void tryTerminate() {
        for (;;) {
          
            int c = ctl.get();
          
           //条件一
           //判断线程池状态,如果正在运行,现在是TIDY或者TERMINATED,
           //又或者现在是SHUTDOWN状态,但是工作队列非空则无需继续处理
            if (isRunning(c) ||
                runStateAtLeast(c, TIDYING) ||
                (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                return;
          
           //条件二
           //工作线程为0,可以关闭线程池,则中断空闲线程
            if (workerCountOf(c) != 0) { // Eligible to terminate
                interruptIdleWorkers(ONLY_ONE);
                return;
            }
          
            //为什么使用CAS操作还上锁了呢
            //无视条件一和条件二的代码则相当于在循环中获取CAS变量的状态
            //之后比较并测试,上锁为了保证terminated方法只调用一次。
            //下面的CAS操作将线程池状态设置为TIDY,如果当前线程设置成功了(返回true)
            //那么其他线程同时进入到这个方法的时候就会被条件一中的runStateAtLeast条件过滤而返回
            //而且不上锁的话。可能会出现当前线程刚刚将状态设置为TIDY,
            //而另外一个线程因为CAS操作失败之后,重新获取状态为TIDY,而且调用CAS操作将TIDY设置为TIDY
            //这样terminated方法又会调佣一遍。就会出现问题。
   
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                    try {
                        terminated();
                    } finally {
                        ctl.set(ctlOf(TERMINATED, 0));
                        termination.signalAll();
                    }
                    return;
                }
            } finally {
                mainLock.unlock();
            }
            // else retry on failed CAS
        }
    }

4.5 控制工作线程中断的方法

interruptWorkers中断所有Worker,调用Worker.interruptIfStarted()

线程池中的所有Worker是保存在一个HashSet(workers)中的(为保证线程安全,对这个集合的操作需要得到mainLock)

//中断空闲进程
//空闲进程的判断:
//Worker本身是一个互斥锁,如果当前Worker正在工作这个锁是被lock的。
//那么其他线程想要得到Worker的锁(tryLock)会返回false那么这个Worker就不是空闲进程。

    /**
     *@param onlyOne If true, interrupt at most one worker. This is
     * called only from tryTerminate when termination is otherwise
     * enabled but there are still other workers.  In this case, at
     * most one waiting worker is interrupted to propagate shutdown
     * signals in case all threads are currently waiting.
     * Interrupting any arbitrary thread ensures that newly arriving
     * workers since shutdown began will also eventually exit.
     * To guarantee eventual termination, it suffices to always
     * interrupt only one idle worker, but shutdown() interrupts all
     * idle workers so that redundant workers exit promptly, not
     * waiting for a straggler task to finish.
     */

private void interruptIdleWorkers(boolean onlyOne) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers) {
                Thread t = w.thread;
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        w.unlock();
                    }
                }
                if (onlyOne)
                    break;
            }
        } finally {
            mainLock.unlock();
        }
    }

4.6 addWorker

用来增加线程

private boolean addWorker(Runnable firstTask, boolean core) {
  
  //该代码块逻辑,如果成功增加了线程数目而且线程池运行状态不变则继续运行。略过
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

  //增加Worker主要逻辑
  //只要一个Worker构造出来就已经包含一个Thread了(见上构造方法)
  //但是如果ThreadFactory无法创建线程则会返回null
  
        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                      
                     // Thread.isAlive()它表示线程当前是否为可用状态,
                     // 如果线程已经启动,并且当前没有任何异常的话,则返回true,否则为false
                     // 一个Worker中的线程应该是未启动的。返回true则抛出异常。
                      
                     //添加到HashSet中
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();//线程执行
                    workerStarted = true;
                }
            }
        } finally {
          //如果上面抛出异常了或者ThreadFactory无法创建异常,会执行addWorkerFailed方法
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

4.7 addWorkerFailed

/**
     * Rolls back the worker thread creation.
     * - removes worker from workers, if present
     * - decrements worker count
     * - rechecks for termination, in case the existence of this
     *   worker was holding up termination
     */

  //从HashSet中移除Worker,减少Worker数量
    private void addWorkerFailed(Worker w) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (w != null)
                workers.remove(w);
            decrementWorkerCount();
          //[为什么调用]tryTerminate()?
            tryTerminate();
        } finally {
            mainLock.unlock();
        }
    }

4.8 启动Worker

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
  
       // allow interrupts 
       //见上4.5
        w.unlock();
       
        boolean completedAbruptly = true;
        try {
            //从队列中获取任务getTask()
            while (task != null || (task = getTask()) != null) {
                w.lock();
                
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
              //如果调用线程被中断了而Worker的线程没被中断,则中断worker中的线程。
              
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

4.9 processWorkerExit

private void processWorkerExit(Worker w, boolean completedAbruptly) {
        if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
            decrementWorkerCount();

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            completedTaskCount += w.completedTasks;
            workers.remove(w);
        } finally {
            mainLock.unlock();
        }

        tryTerminate();

        int c = ctl.get();
        if (runStateLessThan(c, STOP)) {
            if (!completedAbruptly) {
              //正常退出则判断是否应该增加Worker
                int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                if (min == 0 && ! workQueue.isEmpty())
                    min = 1;
                if (workerCountOf(c) >= min)
                    return; // replacement not needed
            }
            //增加Worker 4.6
            addWorker(null, false);
        }
    }

4.10 execute方法

/**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        //少于核心数目,增加worker并直接运行且execute返回
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
      
        //offer如果能添加到任务队列中则返回true(不能添加则队列满了)
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            //重新获取线程池状态,如果不是RUNNING状态则移除任务,
            //调用RejectedExecutionHandler方法来处理拒绝任务的逻辑。
            if (! isRunning(recheck) && remove(command))
                reject(command);
          
            //如果工作线程数目为0则新建线程
            //这里的逻辑
            //上面offer返回true,则说明入队。
            //addWorker方法 4.6
            //会直接启动Worker线程,运行runWorker() 该方法中如果Worker中的任务为null
            //则会从队列中取任务4.8
            //所以这里会在线程数为0时创建线程
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            //无法执行任务条件则拒绝
            reject(command);
    }

4.11 getTask

private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            // 线程池关闭
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                //降低工作线程数
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            //如果超过最大线程数 或者 获取任务超时
            //而且在工作队列为空的时候还存在空闲的工作线程
            //则降低工作线程数目
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

相关文章

网友评论

      本文标题:ThreadPoolExecutor 源码浅析(一)

      本文链接:https://www.haomeiwen.com/subject/nsfxfftx.html