美文网首页
Python 实现循环的最快方式(for、while 等速度对比

Python 实现循环的最快方式(for、while 等速度对比

作者: 梦幻小孩斋 | 来源:发表于2021-12-08 17:13 被阅读0次
    image

    众所周知,Python 不是一种执行效率较高的语言。此外在任何语言中,循环都是一种非常消耗时间的操作。假如任意一种简单的单步操作耗费的时间为 1 个单位,将此操作重复执行上万次,最终耗费的时间也将增长上万倍。

    和 是 Python 中常用的两种实现循环的关键字,它们的运行效率实际上是有差距的。比如下面的测试代码:

    这是一个简单的求和操作,计算从 1 到 n 之间所有自然数的总和。可以看到 循环相比 要快 1.5 秒。

    其中的差距主要在于两者的机制不同。

    在每次循环中, 实际上比 多执行了两步操作:边界检查和变量 的自增。即每进行一次循环,while 都会做一次边界检查 ()和自增计算()。这两步操作都是显式的纯 Python 代码。

    循环不需要执行边界检查和自增操作,没有增加显式的 Python 代码(纯 Python 代码效率低于底层的 C 代码)。当循环的次数足够多,就出现了明显的效率差距。

    可以再增加两个函数,在 循环中加上不必要的边界检查和自增计算:

    可以看出,增加的边界检查和自增操作确实大大影响了 循环的执行效率。

    前面提到过,Python 底层的解释器和内置函数是用 C 语言实现的。而 C 语言的执行效率远大于 Python。

    对于上面的求等差数列之和的操作,借助于 Python 内置的 函数,可以获得远大于 或 循环的执行效率。

    可以看到,使用内置函数 替代循环之后,代码的执行效率实现了成倍的增长。

    内置函数 的累加操作实际上也是一种循环,但它由 C 语言实现,而 循环中的求和操作是由纯 Python 代码 实现的。C > Python。

    再拓展一下思维。小时候都听说过童年高斯巧妙地计算 1 到 100 之和的故事。1…100 之和等于 (1 + 100) * 50。这个计算方法同样可以应用到上面的求和操作中。

    最终 math sum 的执行时间约为 ,缩短了上百万倍。这里的思路就是,既然循环的效率低,一段代码要重复执行上亿次。

    索性直接不要循环,通过数学公式,把上亿次的循环操作变成只有一步操作。效率自然得到了空前的加强。

    最后的结论(有点谜语人):

    实现循环的最快方式——————就是不用循环

    对于 Python 而言,则尽可能地使用内置函数,将循环中的纯 Python 代码降到最低。

    相关文章

      网友评论

          本文标题:Python 实现循环的最快方式(for、while 等速度对比

          本文链接:https://www.haomeiwen.com/subject/ntpaxrtx.html