美文网首页
209. Minimum Size Subarray Sum 长

209. Minimum Size Subarray Sum 长

作者: xingzai | 来源:发表于2019-05-02 01:03 被阅读0次

    题目链接
    tag:

    • Medium;

    question:
      Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.

    Example:

    Input: s = 7, nums = [2,3,1,2,4,3]
    Output: 2
    Explanation: the subarray [4,3] has the minimal length under the problem constraint.
    Follow up:
    If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

    思路:
      这道题给定了我们一个数字,让我们求子数组之和大于等于给定值的最小长度,跟之前那道 Maximum Subarray 有些类似,并且题目中要求我们实现 O(n) 和 O(nlgn) 两种解法,那么我们先来看 O(n) 的解法,我们需要定义两个指针 left 和 right,分别记录子数组的左右的边界位置,然后我们让 right 向右移,直到子数组和大于等于给定值或者 right 达到数组末尾,此时我们更新最短距离,并且将 left 像右移一位,然后再 sum 中减去移去的值,然后重复上面的步骤,直到 right 到达末尾,且 left 到达临界位置,即要么到达边界,要么再往右移动,和就会小于给定值。代码如下:

    // O(n)
    class Solution {
    public:
        int minSubArrayLen(int s, vector<int>& nums) {
            if (nums.empty()) return 0;
            int left = 0, right = 0, sum = 0, len = nums.size(), res = len + 1;
            while (right < len) {
                while (sum < s && right < len) {
                    sum += nums[right++];
                }
                while (sum >= s) {
                    res = min(res, right - left);
                    sum -= nums[left++];
                }
            }
            return res == len + 1 ? 0 : res;
        }
    };
    

    相关文章

      网友评论

          本文标题:209. Minimum Size Subarray Sum 长

          本文链接:https://www.haomeiwen.com/subject/ntpgnqtx.html