美文网首页
《ECO: Efficient Convolutional Ne

《ECO: Efficient Convolutional Ne

作者: ce0b74704937 | 来源:发表于2021-05-16 17:18 被阅读0次

    文章地址:《ECO: Efficient Convolutional Network for Online Video Understanding》

    代码地址:https://github.com/mzolfaghari/ECO-efficient-video-understanding

    对于视频理解,只使用少部分帧计算速度会比较快,但是对于数秒长的视频需要利用更多的帧信息来提高检测精度。为了解决这种问题,文章提出一种既可以利用较长的时间信息又可以较快的计算的网络。

    一、网络结构

    首先文章认为视频帧存在一些冗余,所以输入网络的视频帧可以采样获得。

    对于一个输入视频,先将视频分为N等分S_i, i=1,...,N,对于每个部分都随机采样一帧,每一帧都经过一个2DCNN网络,得到N个feature后,不同的通道进行堆叠就可以得到有时序信息的feature了,然后将堆叠后的feature输入到3DCNN网络,最终输出动作类别。网络的结构如下图所示:

    1.png

    1.1 ECO Lite 和 ECO Full

    上图中的结构就是ECO Lite,但是该结构浪费了short-term actions的信息,对于短时间动作可能可以只通过少量的视频帧来进行分类,为了更好的提取这部分信息,文章在3DCNN并行加上2DCNN网络,加2DCNN的网络成为ECO Full。两种网络结构图如下图所示:

    2.png

    文章2D-Net采用BN-Inception网络,3D-Net网络采用3D-Resnet18,2D-Nets采用BN-Inception网络(该网络与3D-Net是并行结构,每帧预测的feature进行pooling后与3D-Net输出进行concatenate)

    二、Online video understanding

    对于有些场景需要对在线视频进行处理,文章提出的网络也能很好的处理这种视频。

    对online video的处理流程如下伪代码所示:

    3.png
    1. 首先初始化一个queue Q(Q的大小为N帧)和一个工作内存SN
    2. 当开始检测是有N帧都放入SN中
    3. 将SN所有的视频帧都输入到ECO网络进行预测,输出P
    4. 视频帧不断的输入,都存入Q中,当Q满后,从SN采样\frac{N}{2}和从Q中采样\frac{N}{2}
    5. 将采样出来的N帧更新SN,然后跳到3步骤
    6. 最终的预测用PA表示,PA为P与之前的PA的平均

    采样方式采用的是uniform的方式,如下图所示

    4.png

    相关文章

      网友评论

          本文标题:《ECO: Efficient Convolutional Ne

          本文链接:https://www.haomeiwen.com/subject/ntrndltx.html