美文网首页二叉树之下
【剑指Offer 39】判断二叉树是不是平衡二叉树

【剑指Offer 39】判断二叉树是不是平衡二叉树

作者: 3e1094b2ef7b | 来源:发表于2017-07-22 14:29 被阅读30次

题目:输入一棵二叉树的根结点,判断该树是不是平衡二叉树。如果某二叉树中任意结点的左右子树的深度相差不超过1 ,那么它就是一棵平衡二叉树。

代码如下:

package demo;

public class Test39_2 {
    private static class BinaryTreeNode {
        int val;
        BinaryTreeNode left;
        BinaryTreeNode right;

        public BinaryTreeNode() {
        }

        public BinaryTreeNode(int val) {
            this.val = val;
        }
    }

    public static int treeDepth(BinaryTreeNode root) {
        if (root == null) {
            return 0;
        }
        int left = treeDepth(root.left);
        int right = treeDepth(root.right);
        return left > right ? (left + 1) : (right + 1);
    }

    /**
     * 判断是否是平衡二叉树 解法1:在遍历树的每个结点的时候,调用函数treeDepth得到它的左右子树的深度。
     * 如果每个结点的左右子树的深度相差都不超过1,则它就是一棵平衡二叉树。
     * 
     * @param root
     * @return
     */
    public static boolean isBalanced(BinaryTreeNode root) {
        if (root == null) {
            return true;
        }
        int left = treeDepth(root.left);
        int right = treeDepth(root.right);
        int diff = left - right;
        if (Math.abs(diff) > 1) {
            return false;
        }
        return isBalanced(root.left) && isBalanced(root.right);
    }

    /**
     * 判断是否是平衡二叉树 解法2:每个结点只遍历一次。 用后序遍历的方式遍历二叉树的每一个结点,在遍历到一个结点之前我们就已经遍历了它的左右子树。
     * 只要在遍历每个结点的时候记录它的深度(某一结点的深度等于它到叶子结点的路径的长度), 我们就可以一边遍历一边判断每个结点是不是平衡的。
     * 
     * @param root
     * @return
     */
    public static boolean isBalanced2(BinaryTreeNode root) {
        int[] depth = new int[1];
        return isBalancedHelper(root, depth);
    }

    private static boolean isBalancedHelper(BinaryTreeNode root, int[] depth) {
        if (root == null) {
            depth[0] = 0;
            return true;
        }
        int[] left = new int[1];
        int[] right = new int[1];
        if (isBalancedHelper(root.left, left) && isBalancedHelper(root.right, right)) {
            int diff = left[0] - right[0];
            if (Math.abs(diff) <= 1) {
                depth[0] = 1 + (left[0] > right[0] ? left[0] : right[0]);
                return true;
            }
        }
        return false;
    }

    public static void main(String[] args) {
        test1();
        test2();
        test3();
        test4();
        test5();
    }

    private static void test1() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(2);
        BinaryTreeNode n3 = new BinaryTreeNode(3);
        BinaryTreeNode n4 = new BinaryTreeNode(4);
        BinaryTreeNode n5 = new BinaryTreeNode(5);
        BinaryTreeNode n6 = new BinaryTreeNode(6);
        BinaryTreeNode n7 = new BinaryTreeNode(7);
        n1.left = n2;
        n1.right = n3;
        n2.left = n4;
        n2.right = n5;
        n3.left = n6;
        n3.right = n7;
        System.out.println("test1:完全二叉树:");
        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println();
    }

    private static void test2() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(2);
        BinaryTreeNode n3 = new BinaryTreeNode(3);
        BinaryTreeNode n4 = new BinaryTreeNode(4);
        BinaryTreeNode n5 = new BinaryTreeNode(5);
        BinaryTreeNode n6 = new BinaryTreeNode(6);
        BinaryTreeNode n7 = new BinaryTreeNode(7);
        n1.left = n2;
        n1.right = n3;
        n2.left = n4;
        n2.right = n5;
        n3.right = n6;
        n5.left = n7;
        System.out.println("test2:不是完全二叉树,但是是普通的平衡二叉树:");
        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println();
    }

    private static void test3() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(2);
        BinaryTreeNode n3 = new BinaryTreeNode(3);
        BinaryTreeNode n4 = new BinaryTreeNode(4);
        BinaryTreeNode n5 = new BinaryTreeNode(5);
        BinaryTreeNode n6 = new BinaryTreeNode(6);
        BinaryTreeNode n7 = new BinaryTreeNode(7);
        n1.left = n2;
        n1.right = n3;
        n2.left = n4;
        n2.right = n5;
        n5.left = n7;
        System.out.println("test3:不是平衡二叉树:");
        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println();
    }

    private static void test4() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(2);
        BinaryTreeNode n3 = new BinaryTreeNode(3);
        BinaryTreeNode n4 = new BinaryTreeNode(4);
        BinaryTreeNode n5 = new BinaryTreeNode(5);
        n1.left = n2;
        n2.left = n3;
        n3.left = n4;
        n4.left = n5;
        System.out.println("test4:只有左子树:");
        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println();
    }

    private static void test5() {
        BinaryTreeNode n1 = new BinaryTreeNode(1);
        BinaryTreeNode n2 = new BinaryTreeNode(2);
        BinaryTreeNode n3 = new BinaryTreeNode(3);
        BinaryTreeNode n4 = new BinaryTreeNode(4);
        BinaryTreeNode n5 = new BinaryTreeNode(5);
        n1.right = n2;
        n2.right = n3;
        n3.right = n4;
        n4.right = n5;
        System.out.println("test5:只有右子树:");
        System.out.println(isBalanced(n1));
        System.out.println(isBalanced2(n1));
        System.out.println();
    }
}
运行结果

来源:http://blog.csdn.net/derrantcm/article/details/46771529

相关文章

网友评论

    本文标题:【剑指Offer 39】判断二叉树是不是平衡二叉树

    本文链接:https://www.haomeiwen.com/subject/ntxukxtx.html