美文网首页
TensorFlow知识点

TensorFlow知识点

作者: 肆不肆傻 | 来源:发表于2018-01-10 13:33 被阅读0次

    1. 使用指定的GPU和显存

    如果设备上装备了多块GPU,TF运行时默认使用所有与他可见GPU,而且默认使用尽可能多的显存。可是,很多情况下我们的程序实际上并不需要消耗那么多资源,TF的这种独占性的处理方式就造成了资源浪费。那么如何限制TF 可使用的GPU数目和显存容量呢?

    1.1 设置TF可使用GPU设备

    GPU设备在TF下是从零开始编号的,如果设备上有四块GPU设备,他们的编号依次是 0,1,2,3. 设备名称依次是 "/gpu:0","/gpu:1","/gpu:2","/gpu:3"。默认所有设备是TF运行时可见的,而TF默认也会占用所有与他可见的GPU设备。我们可以通过环境变量
    CUDA_VISIBLE_DEVICES 来设置哪些GPU对TF可见,具体语法如下:

    Environment Variable Syntax Results
    CUDA_VISIBLE_DEVICES=1 Only device 1 will be seen
    CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible
    CUDA_VISIBLE_DEVICES="0,1" Same as above, quotation marks are optional
    CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked

    为保证设备使用上的灵活性, CUDA_VISIBLE_DEVICES 环境变量应为临时变量 ,默认情况下该临时变量不存在或未设置。终端中配置使用方法如下:

    ## Windows 下设置使用方法
    # set  CUDA_DEVICE_ORDER=PCI_BUS_ID     # 设置按PCI_BUS_ID 顺序索引设备
    set CUDA_VISIBLE_DEVICES=1     # 设置/gpu:1或1号GPU对后续CUDA程序可见
    python mywork.py
    
    ## Linux 下设置使用方法
    CUDA_VISIBLE_DEVICES=1 python mywork.py
    

    CUDA_VISIBLE_DEVICES临时变量的设置还可放置在Python代码中设置,这样既能保证跨平台的统一性又免去了手动设置临时变量的麻烦。

    import os
    # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"     # 见 Tensorflow issue #152
    os.environ["CUDA_VISIBLE_DEVICES"] = "1"
    

    通过这种方式设置的临时变量值会覆盖在终端中手动设置的值。
    注1: 通过设置临时变量 CUDA_VISIBLE_DEVICES 来设置对TF可见的GPU设备并非TF的专属操作,临时变量CUDA_VISIBLE_DEVICES 是CUDA用来限制CUDA Application 可见GPU设备的手段,参见CUDA_VISIBLE_DEVICES 环境变量说明
    注2: CUDA_VISIBLE_DEVICES 设置的运行时可见设备序号可能与NVML 工具nvidia-smi输出的不一致,参见CUDA_DEVICE_ORDER 环境变量说明

    1.2 设置TF可使用GPU内存容量

    默认情况下,TF将占用尽可能多的可见GPU内存,用户可在启动TF Session时设置GPU参数来加以限制。典型设置分为定量使用和按需使用。

    1.2.1 GPU内存定量使用

    这种设置方法使得TF最多只能使用指定比例的可见显存。

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))  
    

    Tips: 可见显存 = 可见GPU显存总和
    通过上述设置,TF最多只能使用70%的可见显存。

    1.2.2 GPU内存按需使用

    通过设置allow_growth GPU参数,TF可按需使用可见显存。

    gpu_options = tf.GPUOptions(allow_growth=True)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 
    

    2. Variables

    A TensorFlow variable is the best way to represent shared, persistent state manipulated by your program. Variables are manipulated via the tf.Variable class.
    Features:

    1. A variable is a tensor whose value can be changed by running ops on it.
    2. Modifications on a variable are visible across multiple tf.Sessions.
    3. A variable exists outside the context of a single session.run call.

    The best way to create a variable is to call the tf.get_variable function.
    Usage: name = tf.get_variable(str_name,shape=[1], dtype=tf.float32, initializer=tf.glorot_uniform_initializer, collections, trainable)
    params:

    --name: 变量名,用于上下文中引用该变量
    --str_name: 变量名, to name this variable's value when checkpointing and exporting models.
    --shape: 可遍历值(list,tuple etc.), 变量的维度和每一维的长度,类似numpy 数组。默认1维,即标量。
    --dtype:变量数据类型,默认tf.float32
    --initializer: 调用tf.global_variables_initializer()session.run(name.initializer)时变量初始方式,默认tf.glorot_uniform_initializer
    --collections: 变量所在集合
    --trainable: 变量是否可学习,将被放在tf.GraphKeys.TRAINABLE_VARIABLES集合if True
    注:为保证变量使用上的一致性,name 和 str_name 常设成一样。

    #### Variable 使用示例
    ## create a variable in tf.GraphKeys.LOCAL_VARIABLES collection, in which variables are not trainable
    my_local = tf.get_variable("my_local", shape=(), 
    collections=[tf.GraphKeys.LOCAL_VARIABLES])
    
    ## create a variable which is not trainable
    my_non_trainable = tf.get_variable("my_non_trainable", 
                                       shape=(), 
                                       trainable=False)
    
    ## add an existing variable named my_local to a collection named my_collection_name
    tf.add_to_collection("my_collection_name", my_local)
    
    ## retrieve a list of all the variables (or other objects)  in collection  named my_collection_name
    tf.get_collection("my_collection_name")
    
    ## creates a variable named v and places it on the second GPU device
    with tf.device("/device:GPU:1"):
        v = tf.get_variable("v", [1])
    
    ## initialize all variables
    session.run(tf.global_variables_initializer())
    
    ## initialize variable my_variable only
    session.run(my_variable.initializer)
    
    ## prints the names of all variables which have not yet been initialized
    print(session.run(tf.report_uninitialized_variables()))
    
    ## initialize w with v's value
    v = tf.get_variable("v", shape=(), initializer=tf.zeros_initializer())
    w = tf.get_variable("w", initializer=v.initialized_value() + 1)
    
    ## set reuse=True to reuse variables
    with tf.variable_scope("model"):
      output1 = my_image_filter(input1)
    with tf.variable_scope("model", reuse=True):
      output2 = my_image_filter(input2)
    
    ## call scope.reuse_variables() to trigger a variable reuse
    with tf.variable_scope("model") as scope:
      output1 = my_image_filter(input1)
      scope.reuse_variables()
      output2 = my_image_filter(input2)
    
    ## initialize a variable scope based on another one
    ## set reuse=true to share variables
    with tf.variable_scope("model") as scope:
      output1 = my_image_filter(input1)
    with tf.variable_scope(scope, reuse=True):
      output2 = my_image_filter(input2)
    
    1. Any string is a valid collection name, and there is no need to explicitly create a collection.
    2. Note that by default tf.global_variables_initializer does not specify the order in which variables are initialized. Therefore, if the initial value of a variable depends on another variable's value, it's likely that you'll get an error. Any time you use the value of a variable in a context in which not all variables are initialized, it is best to use variable.initialized_value() instead of variable.
    3. Variable scopes allow you to control variable reuse when calling functions which implicitly create and use variables. They also allow you to name your variables in a hierarchical and understandable way.
    4. Since depending on exact string names of scopes can feel dangerous, it's also possible to initialize a variable scope based on another one

    Goto Tensorflow Docs -- Variables

    3. Tensorboard multiple scalar summaries in one plot

    Tensorboard 一张图中画两个变量,方便对比,如:


    对比图
    import tensorflow as tf
    from numpy import random
    
    writer_1 = tf.summary.FileWriter("./logs/plot_1")
    writer_2 = tf.summary.FileWriter("./logs/plot_2")
    
    log_var = tf.Variable(0.0)
    tf.summary.scalar("loss", log_var)
    
    write_op = tf.summary.merge_all()
    
    session = tf.InteractiveSession()
    session.run(tf.global_variables_initializer())
    
    for i in range(100):
        # for writer 1
        summary = session.run(write_op, {log_var: random.rand()})
        writer_1.add_summary(summary, i)
        writer_1.flush()
    
        # for writer 2
        summary = session.run(write_op, {log_var: random.rand()})
        writer_2.add_summary(summary, i)
        writer_2.flush()
    

    相关文章

      网友评论

          本文标题:TensorFlow知识点

          本文链接:https://www.haomeiwen.com/subject/nuwnnxtx.html