美文网首页大数据 爬虫Python AI SqlPython小哥哥
50个数据可视化最有价值的图表(附完整Python源代码建议收藏

50个数据可视化最有价值的图表(附完整Python源代码建议收藏

作者: 14e61d025165 | 来源:发表于2019-03-22 14:50 被阅读1次

    在数据分析和可视化中最有用的 50 个 Matplotlib 图表。这些图表列表允许您使用 python 的 matplotlib 和 seaborn 库选择要显示的可视化对象。
    由于篇幅有限 所以没有全部贴上来!需要全部图表的加群:683380553!

    • 介绍

    这些图表根据可视化目标的7个不同情景进行分组。例如,如果要想象两个变量之间的关系,请查看“关联”部分下的图表。或者,如果您想要显示值如何随时间变化,请查看“变化”部分,依此类推。

    有效图表的重要特征:

    • 在不歪曲事实的情况下传达正确和必要的信息。

    • 设计简单,您不必太费力就能理解它。

    • 从审美角度支持信息而不是掩盖信息。

    • 信息没有超负荷。

    • 准备工作

    在代码运行前先引入下面的设置内容。当然,单独的图表,可以重新设置显示要素。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # !pip install brewer2mpl

    2. import numpy as np

    3. import pandas as pd

    4. import matplotlib as mpl

    5. import matplotlib.pyplot as plt

    6. import seaborn as sns

    7. import warnings; warnings.filterwarnings(action='once')

    8. large = 22; med = 16; small = 12

    9. params = {'axes.titlesize': large,

    10. 'legend.fontsize': med,

    11. 'figure.figsize': (16, 10),

    12. 'axes.labelsize': med,

    13. 'axes.titlesize': med,

    14. 'xtick.labelsize': med,

    15. 'ytick.labelsize': med,

    16. 'figure.titlesize': large}

    17. plt.rcParams.update(params)

    18. plt.style.use('seaborn-whitegrid')

    19. sns.set_style("white")

    20. %matplotlib inline

    21. # Version

    22. print(mpl.__version__) #> 3.0.0

    23. print(sns.__version__) #> 0.9.0

    </pre>

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. 3.0.2

    2. 0.9.0

    </pre>

    01 关联 (Correlation)

    关联图表用于可视化2个或更多变量之间的关系。也就是说,一个变量如何相对于另一个变化。

    1. 散点图(Scatter plot)

    散点图是用于研究两个变量之间关系的经典的和基本的图表。如果数据中有多个组,则可能需要以不同颜色可视化每个组。在 matplotlib 中,您可以使用 **plt.scatterplot() **方便地执行此操作。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")

    2. # Prepare Data

    3. # Create as many colors as there are unique midwest['category']

    4. categories = np.unique(midwest['category'])

    5. colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]

    6. # Draw Plot for Each Category

    7. plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')

    8. for i, category in enumerate(categories):

    9. plt.scatter('area', 'poptotal',

    10. data=midwest.loc[midwest.category==category, :],

    11. s=20, cmap=colors[i], label=str(category))

    12. # "c=" 修改为 "cmap=",Python数据之道 备注

    13. # Decorations

    14. plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),

    15. xlabel='Area', ylabel='Population')

    16. plt.xticks(fontsize=12); plt.yticks(fontsize=12)

    17. plt.title("Scatterplot of Midwest Area vs Population", fontsize=22)

    18. plt.legend(fontsize=12)

    19. plt.show()

    </pre>

    由于

    ▲图1

    2. 带边界的气泡图(Bubble plot with Encircling)

    有时,您希望在边界内显示一组点以强调其重要性。在这个例子中,你从数据框中获取记录,并用下面代码中描述的** encircle() **来使边界显示出来。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. from matplotlib import patches

    2. from scipy.spatial import ConvexHull

    3. import warnings; warnings.simplefilter('ignore')

    4. sns.set_style("white")

    5. # Step 1: Prepare Data

    6. midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")

    7. # As many colors as there are unique midwest['category']

    8. categories = np.unique(midwest['category'])

    9. colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]

    10. # Step 2: Draw Scatterplot with unique color for each category

    11. fig = plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')

    12. for i, category in enumerate(categories):

    13. plt.scatter('area', 'poptotal', data=midwest.loc[midwest.category==category, :],

    14. s='dot_size', cmap=colors[i], label=str(category), edgecolors='black', linewidths=.5)

    15. # "c=" 修改为 "cmap=",Python数据之道 备注

    16. # Step 3: Encircling

    17. # https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot

    18. def encircle(x,y, ax=None, **kw):

    19. if not ax: ax=plt.gca()

    20. p = np.c_[x,y]

    21. hull = ConvexHull(p)

    22. poly = plt.Polygon(p[hull.vertices,:], **kw)

    23. ax.add_patch(poly)

    24. # Select data to be encircled

    25. midwest_encircle_data = midwest.loc[midwest.state=='IN', :]

    26. # Draw polygon surrounding vertices

    27. encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="k", fc="gold", alpha=0.1)

    28. encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="firebrick", fc="none", linewidth=1.5)

    29. # Step 4: Decorations

    30. plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),

    31. xlabel='Area', ylabel='Population')

    32. plt.xticks(fontsize=12); plt.yticks(fontsize=12)

    33. plt.title("Bubble Plot with Encircling", fontsize=22)

    34. plt.legend(fontsize=12)

    35. plt.show()

    </pre>

    image

    ▲图2

    3. 带线性回归最佳拟合线的散点图 (Scatter plot with linear regression line of best fit)

    如果你想了解两个变量如何相互改变,那么最佳拟合线就是常用的方法。下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从下面的 sns.lmplot()调用中删除** hue ='cyl'**参数。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Import Data

    2. df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

    3. df_select = df.loc[df.cyl.isin([4,8]), :]

    4. # Plot

    5. sns.set_style("white")

    6. gridobj = sns.lmplot(x="displ", y="hwy", hue="cyl", data=df_select,

    7. height=7, aspect=1.6, robust=True, palette='tab10',

    8. scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))

    9. # Decorations

    10. gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))

    11. plt.title("Scatterplot with line of best fit grouped by number of cylinders", fontsize=20)

    12. plt.show()

    </pre>

    image

    ▲图3

    • 针对每列绘制线性回归线

    或者,可以在其每列中显示每个组的最佳拟合线。可以通过在** sns.lmplot() **中设置 **col=groupingcolumn **参数来实现,如下:

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Import Data

    2. df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

    3. df_select = df.loc[df.cyl.isin([4,8]), :]

    4. # Each line in its own column

    5. sns.set_style("white")

    6. gridobj = sns.lmplot(x="displ", y="hwy",

    7. data=df_select,

    8. height=7,

    9. robust=True,

    10. palette='Set1',

    11. col="cyl",

    12. scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))

    13. # Decorations

    14. gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))

    15. plt.show()

    </pre>

    image

    ▲图3-2

    4. 抖动图 (Jittering with stripplot)

    通常,多个数据点具有完全相同的 X 和 Y 值。 结果,多个点绘制会重叠并隐藏。为避免这种情况,请将数据点稍微抖动,以便您可以直观地看到它们。使用 seaborn 的 stripplot() 很方便实现这个功能。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Import Data

    2. df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

    3. # Draw Stripplot

    4. fig, ax = plt.subplots(figsize=(16,10), dpi= 80)

    5. sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5)

    6. # Decorations

    7. plt.title('Use jittered plots to avoid overlapping of points', fontsize=22)

    8. plt.show()

    </pre>

    image

    ▲图4

    5. 计数图 (Counts Plot)

    避免点重叠问题的另一个选择是增加点的大小,这取决于该点中有多少点。因此,点的大小越大,其周围的点的集中度越高。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Import Data

    2. df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

    3. df_counts = df.groupby(['hwy', 'cty']).size().reset_index(name='counts')

    4. # Draw Stripplot

    5. fig, ax = plt.subplots(figsize=(16,10), dpi= 80)

    6. sns.stripplot(df_counts.cty, df_counts.hwy, size=df_counts.counts*2, ax=ax)

    7. # Decorations

    8. plt.title('Counts Plot - Size of circle is bigger as more points overlap', fontsize=22)

    9. plt.show()

    </pre>

    image

    ▲图5

    6. 边缘直方图 (Marginal Histogram)

    边缘直方图具有沿 X 和 Y 轴变量的直方图。 这用于可视化 X 和 Y 之间的关系以及单独的 X 和 Y 的单变量分布。 这种图经常用于探索性数据分析(EDA)。

    image

    ▲图6

    7. 边缘箱形图 (Marginal Boxplot)

    边缘箱图与边缘直方图具有相似的用途。然而,箱线图有助于精确定位 X 和 Y 的中位数、第25和第75百分位数。

    image

    ▲图7

    8. 相关图 (Correllogram)

    相关图用于直观地查看给定数据框(或二维数组)中所有可能的数值变量对之间的相关度量。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Import Dataset

    2. df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

    3. # Plot

    4. plt.figure(figsize=(12,10), dpi= 80)

    5. sns.heatmap(df.corr(), xticklabels=df.corr().columns, yticklabels=df.corr().columns, cmap='RdYlGn', center=0, annot=True)

    6. # Decorations

    7. plt.title('Correlogram of mtcars', fontsize=22)

    8. plt.xticks(fontsize=12)

    9. plt.yticks(fontsize=12)

    10. plt.show()

    </pre>

    image

    ▲图8

    9. 矩阵图 (Pairwise Plot)

    矩阵图是探索性分析中的最爱,用于理解所有可能的数值变量对之间的关系。它是双变量分析的必备工具。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Load Dataset

    2. df = sns.load_dataset('iris')

    3. # Plot

    4. plt.figure(figsize=(10,8), dpi= 80)

    5. sns.pairplot(df, kind="scatter", hue="species", plot_kws=dict(s=80, edgecolor="white", linewidth=2.5))

    6. plt.show()

    </pre>

    image

    ▲图9

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Load Dataset

    2. df = sns.load_dataset('iris')

    3. # Plot

    4. plt.figure(figsize=(10,8), dpi= 80)

    5. sns.pairplot(df, kind="reg", hue="species")

    6. plt.show()

    </pre>

    image

    ▲图9-2

    02 偏差 (Deviation)

    10. 发散型条形图 (Diverging Bars)

    如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条形图 (Diverging Bars) 是一个很好的工具。它有助于快速区分数据中组的性能,并且非常直观,并且可以立即传达这一点。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Prepare Data

    2. df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

    3. x = df.loc[:, ['mpg']]

    4. df['mpg_z'] = (x - x.mean())/x.std()

    5. df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']]

    6. df.sort_values('mpg_z', inplace=True)

    7. df.reset_index(inplace=True)

    8. # Draw plot

    9. plt.figure(figsize=(14,10), dpi= 80)

    10. plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=5)

    11. # Decorations

    12. plt.gca().set(ylabel='$Model/pre>, xlabel='$Mileage/pre>)

    13. plt.yticks(df.index, df.cars, fontsize=12)

    14. plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})

    15. plt.grid(linestyle='--', alpha=0.5)

    16. plt.show()

    </pre>

    image

    ▲图10

    11. 发散型文本 (Diverging Texts)

    发散型文本 (Diverging Texts)与发散型条形图 (Diverging Bars)相似,如果你想以一种漂亮和可呈现的方式显示图表中每个项目的价值,就可以使用这种方法。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Prepare Data

    2. df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

    3. x = df.loc[:, ['mpg']]

    4. df['mpg_z'] = (x - x.mean())/x.std()

    5. df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']]

    6. df.sort_values('mpg_z', inplace=True)

    7. df.reset_index(inplace=True)

    8. # Draw plot

    9. plt.figure(figsize=(14,14), dpi= 80)

    10. plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z)

    11. for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):

    12. t = plt.text(x, y, round(tex, 2), horizontalalignment='right' if x < 0 else 'left',

    13. verticalalignment='center', fontdict={'color':'red' if x < 0 else 'green', 'size':14})

    14. # Decorations

    15. plt.yticks(df.index, df.cars, fontsize=12)

    16. plt.title('Diverging Text Bars of Car Mileage', fontdict={'size':20})

    17. plt.grid(linestyle='--', alpha=0.5)

    18. plt.xlim(-2.5, 2.5)

    19. plt.show()

    </pre>

    image

    ▲图11

    12. 发散型包点图 (Diverging Dot Plot)

    发散型包点图 (Diverging Dot Plot)也类似于发散型条形图 (Diverging Bars)。然而,与发散型条形图 (Diverging Bars)相比,条的缺失减少了组之间的对比度和差异。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. # Prepare Data

    2. df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

    3. x = df.loc[:, ['mpg']]

    4. df['mpg_z'] = (x - x.mean())/x.std()

    5. df['colors'] = ['red' if x < 0 else 'darkgreen' for x in df['mpg_z']]

    6. df.sort_values('mpg_z', inplace=True)

    7. df.reset_index(inplace=True)

    8. # Draw plot

    9. plt.figure(figsize=(14,16), dpi= 80)

    10. plt.scatter(df.mpg_z, df.index, s=450, alpha=.6, color=df.colors)

    11. for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):

    12. t = plt.text(x, y, round(tex, 1), horizontalalignment='center',

    13. verticalalignment='center', fontdict={'color':'white'})

    14. # Decorations

    15. # Lighten borders

    16. plt.gca().spines["top"].set_alpha(.3)

    17. plt.gca().spines["bottom"].set_alpha(.3)

    18. plt.gca().spines["right"].set_alpha(.3)

    19. plt.gca().spines["left"].set_alpha(.3)

    20. plt.yticks(df.index, df.cars)

    21. plt.title('Diverging Dotplot of Car Mileage', fontdict={'size':20})

    22. plt.xlabel('$Mileage/pre>)

    23. plt.grid(linestyle='--', alpha=0.5)

    24. plt.xlim(-2.5, 2.5)

    25. plt.show()

    </pre>

    image

    ▲图12

    13. 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers)

    带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适当地给出推理,提供了一种对差异进行可视化的灵活方式。

    image

    ▲图13

    14. 面积图 (Area Chart)

    通过对轴和线之间的区域进行着色,面积图不仅强调峰和谷,而且还强调高点和低点的持续时间。高点持续时间越长,线下面积越大。

    <pre class="" style="padding: 2px;max-width: 100%;box-sizing: border-box;letter-spacing: 0.544px;overflow: auto;font-family: Consolas, Menlo, Courier, monospace;font-size: 10px;background-color: rgb(45, 45, 45);border-width: 1px;border-style: solid;border-color: rgb(136, 136, 136);color: rgb(89, 89, 89);line-height: 12px;word-wrap: break-word !important;overflow-wrap: break-word !important;">

    1. import numpy as np

    2. import pandas as pd

    3. # Prepare Data

    4. df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv", parse_dates=['date']).head(100)

    5. x = np.arange(df.shape[0])

    6. y_returns = (df.psavert.diff().fillna(0)/df.psavert.shift(1)).fillna(0) * 100

    7. # Plot

    8. plt.figure(figsize=(16,10), dpi= 80)

    9. plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] >= 0, facecolor='green', interpolate=True, alpha=0.7)

    10. plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] <= 0, facecolor='red', interpolate=True, alpha=0.7)

    11. # Annotate

    12. plt.annotate('Peak \n1975', xy=(94.0, 21.0), xytext=(88.0, 28),

    13. bbox=dict(boxstyle='square', fc='firebrick'),

    14. arrowprops=dict(facecolor='steelblue', shrink=0.05), fontsize=15, color='white')

    15. # Decorations

    16. xtickvals = [str(m)[:3].upper()+"-"+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month_name())]

    17. plt.gca().set_xticks(x[::6])

    18. plt.gca().set_xticklabels(xtickvals[::6], rotation=90, fontdict={'horizontalalignment': 'center', 'verticalalignment': 'center_baseline'})

    19. plt.ylim(-35,35)

    20. plt.xlim(1,100)

    21. plt.title("Month Economics Return %", fontsize=22)

    22. plt.ylabel('Monthly returns %')

    23. plt.grid(alpha=0.5)

    24. plt.show()

    </pre>

    image

    ▲图14

    03 排序 (Ranking)

    15. 有序条形图 (Ordered Bar Chart)

    有序条形图有效地传达了项目的排名顺序。但是,在图表上方添加度量标准的值,用户可以从图表本身获取精确信息。

    image

    相关文章

      网友评论

        本文标题:50个数据可视化最有价值的图表(附完整Python源代码建议收藏

        本文链接:https://www.haomeiwen.com/subject/nvalvqtx.html