SPM12--batch批量预处理数据

作者: Galory | 来源:发表于2018-07-31 20:52 被阅读0次

    实现的代码如下:

    code.m

    % By - Galory  Email - 996377370a@gmail.com
    
    % List of open inputs
    
    global sub type
    % My files are named as 1 2 3 4 5 6 7 8 9 10
    type={'1' '2' '3' '4' '5' '6' '7' '8' '9' '10'};
    
    for i=1:length(type)
        sub = i;
    
    
    nrun = 1; % enter the number of runs here
    jobfile = {'C:\Users\xuwhe\Desktop\pre_fmri\files\batch\code_job.m'};
    jobs = repmat(jobfile, 1, nrun);
    inputs = cell(0, nrun);
    for crun = 1:nrun
    end
    spm('defaults','fmri');
    spm_jobman('run',jobs,inputs{:});
    end
    

    code_job.m

    %-----------------------------------------------------------------------
    % Job saved on 31-Jul-2018 16:26:14 by cfg_util (rev $Rev: 6460 $)
    % spm SPM - SPM12 (6906)
    % cfg_basicio BasicIO - Unknown
    %-----------------------------------------------------------------------
    
    global type sub
    
    inputpath=['C:\Users\xuwhe\Desktop\pre_fmri\data_batch\1dicom\' num2str(sub)];
    outputpath =['C:\Users\xuwhe\Desktop\pre_fmri\data_batch\1dicom\' num2str(sub) '\output'];
    
    %选取raw data
    pathname1=[inputpath '\0002\'];
    sdir1=dir([pathname1,'*.IMA']);%选取IMA
    for i=1:length(sdir1)
        imgfile1{i,1}=[pathname1 sdir1(i).name];
    end
    
    %选取raw data
    pathname2=[inputpath '\0003\'];
    sdir2=dir([pathname2,'*.IMA']);%选取IMA
    for i=1:length(sdir2)
        imgfile2{i,1}=[pathname2 sdir2(i).name];
    end
    
    %选取raw data
    pathname3=[inputpath '\0004\'];
    sdir3=dir([pathname3,'*.IMA']);%选取IMA
    for i=1:length(sdir3)
        imgfile3{i,1}=[pathname3 sdir3(i).name];
    end
    
    %选取raw data
    pathnameT1=[inputpath '\0005\'];
    sdirT1=dir([pathnameT1,'*.IMA']);%选取IMA
    for i=1:length(sdirT1)
        imgfileT1{i,1}=[pathnameT1 sdirT1(i).name];
    end
    
    
    %%
    matlabbatch{1}.spm.util.import.dicom.data = imgfile1
    %%
    matlabbatch{1}.spm.util.import.dicom.root = 'flat';
    matlabbatch{1}.spm.util.import.dicom.outdir = {[outputpath '\RUN1\']};
    matlabbatch{1}.spm.util.import.dicom.protfilter = '.*';
    matlabbatch{1}.spm.util.import.dicom.convopts.format = 'nii';
    matlabbatch{1}.spm.util.import.dicom.convopts.icedims = 0;
    %%
    matlabbatch{2}.spm.util.import.dicom.data = imgfile2
    %%
    matlabbatch{2}.spm.util.import.dicom.root = 'flat';
    matlabbatch{2}.spm.util.import.dicom.outdir = {[outputpath '\RUN2\']};
    matlabbatch{2}.spm.util.import.dicom.protfilter = '.*';
    matlabbatch{2}.spm.util.import.dicom.convopts.format = 'nii';
    matlabbatch{2}.spm.util.import.dicom.convopts.icedims = 0;
    %%
    matlabbatch{3}.spm.util.import.dicom.data = imgfile3
    %%
    matlabbatch{3}.spm.util.import.dicom.root = 'flat';
    matlabbatch{3}.spm.util.import.dicom.outdir = {[outputpath '\RUN3\']};
    matlabbatch{3}.spm.util.import.dicom.protfilter = '.*';
    matlabbatch{3}.spm.util.import.dicom.convopts.format = 'nii';
    matlabbatch{3}.spm.util.import.dicom.convopts.icedims = 0;
    %%
    matlabbatch{4}.spm.util.import.dicom.data = imgfileT1
    %%
    matlabbatch{4}.spm.util.import.dicom.root = 'flat';
    matlabbatch{4}.spm.util.import.dicom.outdir = {[outputpath '\T1\']};
    matlabbatch{4}.spm.util.import.dicom.protfilter = '.*';
    matlabbatch{4}.spm.util.import.dicom.convopts.format = 'nii';
    matlabbatch{4}.spm.util.import.dicom.convopts.icedims = 0;
    matlabbatch{5}.spm.temporal.st.scans{1}(1) = cfg_dep('DICOM Import: Converted Images', substruct('.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','files'));
    matlabbatch{5}.spm.temporal.st.scans{2}(1) = cfg_dep('DICOM Import: Converted Images', substruct('.','val', '{}',{2}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','files'));
    matlabbatch{5}.spm.temporal.st.scans{3}(1) = cfg_dep('DICOM Import: Converted Images', substruct('.','val', '{}',{3}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','files'));
    matlabbatch{5}.spm.temporal.st.nslices = 33;
    matlabbatch{5}.spm.temporal.st.tr = 2;
    matlabbatch{5}.spm.temporal.st.ta = 1.93939393939394;
    matlabbatch{5}.spm.temporal.st.so = [1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32];
    matlabbatch{5}.spm.temporal.st.refslice = 33;
    matlabbatch{5}.spm.temporal.st.prefix = 'a';
    matlabbatch{6}.spm.spatial.realign.estwrite.data{1}(1) = cfg_dep('Slice Timing: Slice Timing Corr. Images (Sess 1)', substruct('.','val', '{}',{5}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('()',{1}, '.','files'));
    matlabbatch{6}.spm.spatial.realign.estwrite.data{2}(1) = cfg_dep('Slice Timing: Slice Timing Corr. Images (Sess 2)', substruct('.','val', '{}',{5}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('()',{2}, '.','files'));
    matlabbatch{6}.spm.spatial.realign.estwrite.data{3}(1) = cfg_dep('Slice Timing: Slice Timing Corr. Images (Sess 3)', substruct('.','val', '{}',{5}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('()',{3}, '.','files'));
    matlabbatch{6}.spm.spatial.realign.estwrite.eoptions.quality = 0.9;
    matlabbatch{6}.spm.spatial.realign.estwrite.eoptions.sep = 4;
    matlabbatch{6}.spm.spatial.realign.estwrite.eoptions.fwhm = 5;
    matlabbatch{6}.spm.spatial.realign.estwrite.eoptions.rtm = 1;
    matlabbatch{6}.spm.spatial.realign.estwrite.eoptions.interp = 2;
    matlabbatch{6}.spm.spatial.realign.estwrite.eoptions.wrap = [0 0 0];
    matlabbatch{6}.spm.spatial.realign.estwrite.eoptions.weight = '';
    matlabbatch{6}.spm.spatial.realign.estwrite.roptions.which = [2 1];
    matlabbatch{6}.spm.spatial.realign.estwrite.roptions.interp = 4;
    matlabbatch{6}.spm.spatial.realign.estwrite.roptions.wrap = [0 0 0];
    matlabbatch{6}.spm.spatial.realign.estwrite.roptions.mask = 1;
    matlabbatch{6}.spm.spatial.realign.estwrite.roptions.prefix = 'r';
    matlabbatch{7}.spm.spatial.coreg.estimate.ref(1) = cfg_dep('DICOM Import: Converted Images', substruct('.','val', '{}',{4}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','files'));
    matlabbatch{7}.spm.spatial.coreg.estimate.source(1) = cfg_dep('Realign: Estimate & Reslice: Mean Image', substruct('.','val', '{}',{6}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','rmean'));
    matlabbatch{7}.spm.spatial.coreg.estimate.other(1) = cfg_dep('Realign: Estimate & Reslice: Resliced Images (Sess 1)', substruct('.','val', '{}',{6}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','sess', '()',{1}, '.','rfiles'));
    matlabbatch{7}.spm.spatial.coreg.estimate.other(2) = cfg_dep('Realign: Estimate & Reslice: Resliced Images (Sess 2)', substruct('.','val', '{}',{6}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','sess', '()',{2}, '.','rfiles'));
    matlabbatch{7}.spm.spatial.coreg.estimate.other(3) = cfg_dep('Realign: Estimate & Reslice: Resliced Images (Sess 3)', substruct('.','val', '{}',{6}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','sess', '()',{3}, '.','rfiles'));
    matlabbatch{7}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi';
    matlabbatch{7}.spm.spatial.coreg.estimate.eoptions.sep = [4 2];
    matlabbatch{7}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
    matlabbatch{7}.spm.spatial.coreg.estimate.eoptions.fwhm = [7 7];
    matlabbatch{8}.spm.tools.oldnorm.estwrite.subj.source(1) = cfg_dep('DICOM Import: Converted Images', substruct('.','val', '{}',{4}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','files'));
    matlabbatch{8}.spm.tools.oldnorm.estwrite.subj.wtsrc = '';
    matlabbatch{8}.spm.tools.oldnorm.estwrite.subj.resample(1) = cfg_dep('Coregister: Estimate: Coregistered Images', substruct('.','val', '{}',{7}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','cfiles'));
    matlabbatch{8}.spm.tools.oldnorm.estwrite.eoptions.template = {'D:\software\neuroscience\Matlab2016b\toolbox\spm12\toolbox\OldNorm\T1.nii,1'};
    matlabbatch{8}.spm.tools.oldnorm.estwrite.eoptions.weight = '';
    matlabbatch{8}.spm.tools.oldnorm.estwrite.eoptions.smosrc = 8;
    matlabbatch{8}.spm.tools.oldnorm.estwrite.eoptions.smoref = 0;
    matlabbatch{8}.spm.tools.oldnorm.estwrite.eoptions.regtype = 'mni';
    matlabbatch{8}.spm.tools.oldnorm.estwrite.eoptions.cutoff = 25;
    matlabbatch{8}.spm.tools.oldnorm.estwrite.eoptions.nits = 16;
    matlabbatch{8}.spm.tools.oldnorm.estwrite.eoptions.reg = 1;
    matlabbatch{8}.spm.tools.oldnorm.estwrite.roptions.preserve = 0;
    matlabbatch{8}.spm.tools.oldnorm.estwrite.roptions.bb = [-78 -112 -70
                                                             78 76 85];
    matlabbatch{8}.spm.tools.oldnorm.estwrite.roptions.vox = [2 2 2];
    matlabbatch{8}.spm.tools.oldnorm.estwrite.roptions.interp = 1;
    matlabbatch{8}.spm.tools.oldnorm.estwrite.roptions.wrap = [0 0 0];
    matlabbatch{8}.spm.tools.oldnorm.estwrite.roptions.prefix = 'w';
    matlabbatch{9}.spm.spatial.smooth.data(1) = cfg_dep('Old Normalise: Estimate & Write: Normalised Images (Subj 1)', substruct('.','val', '{}',{8}, '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('()',{1}, '.','files'));
    matlabbatch{9}.spm.spatial.smooth.fwhm = [8 8 8];
    matlabbatch{9}.spm.spatial.smooth.dtype = 0;
    matlabbatch{9}.spm.spatial.smooth.im = 0;
    matlabbatch{9}.spm.spatial.smooth.prefix = 's';
    

    注意事项:以上代码是基于我的文件结构,因为这批数据有三个session,所以有三个RUN文件夹。具体的用SPM12生成batch会在另一篇博文继续更新。

    image.png image.png image.png

    参考网址:


    20180731

    相关文章

      网友评论

        本文标题:SPM12--batch批量预处理数据

        本文链接:https://www.haomeiwen.com/subject/nvhkvftx.html