美文网首页
论文Automatic Multi-organ Segmenta

论文Automatic Multi-organ Segmenta

作者: chunleiml | 来源:发表于2018-06-29 11:26 被阅读62次

    论文地址:https://ieeexplore.ieee.org/document/8291609/
    论文模型架构如下:
    总体和U-net架构很像,不同之处是使用了卷积单元,里面各卷积层使用全连接的方式。

    DenseVnet.png
    卷积单元代码如下:
        def Inception_dilation(self, inputs, f):        
            conv3 = Conv2D(f , (3, 3), padding='same', activation= 'selu', kernel_initializer = 'lecun_normal')(inputs)
    
            conv5 = Conv2D(f , (3, 3), padding='same', dilation_rate = (3, 3), activation='selu', kernel_initializer='lecun_normal')(inputs)
    
            conv7 = Conv2D(f, (3, 3), padding='same', dilation_rate = (5, 5), activation= 'selu', kernel_initializer = 'lecun_normal')(inputs)
    
            conv9 = Conv2D(f, (3, 3), padding='same', dilation_rate = (7, 7), activation= 'selu', kernel_initializer = 'lecun_normal')(inputs)
          
            merge2 = concatenate([conv3, conv5, conv7, conv9], concat_axis=3)
            return merge2
        def densevnet(self, inputs, f):
            conv3 = self.Inception_dilation(inputs, f)
    
            conv5 = self.Inception_dilation(conv3, f)
            
            merge1 = concatenate([conv3, conv5], concat_axis=3)
            
            conv7 = self.Inception_dilation(merge1, f)
            
            merge2 = concatenate([conv3, conv5, merge1], concat_axis=3)
            
            conv9 = self.Inception_dilation(merge2, f)
            
            merge3 = concatenate([conv3, conv5, conv7, conv9], concat_axis=3)
            return merge3    
    

    总体架构代码可以参考U-net.

    相关文章

      网友评论

          本文标题:论文Automatic Multi-organ Segmenta

          本文链接:https://www.haomeiwen.com/subject/nwaoyftx.html