美文网首页
数据结构之排序(C语言)

数据结构之排序(C语言)

作者: townof1997 | 来源:发表于2019-05-29 11:45 被阅读0次

选择排序
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
排序内容如下:

void swap(int *a,int *b) //交換兩個變數
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
void selection_sort(int arr[], int len) 
{
    int i,j;
 
    for (i = 0 ; i < len - 1 ; i++) 
    {
        int min = i;//记录最小值的位置
        for (j = i + 1; j < len; j++)     //走訪未排序的元素
            if (arr[j] < arr[min])    //找到目前最小值
                min = j;    //紀錄最小值
           swap(&arr[min], &arr[i]);    //做交換
    }
}

插入排序
插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到 {\displaystyle O(1)} {\displaystyle O(1)}的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后

void insertion_sort(int arr[], int len){
    int i,j,temp;
    for (i=1;i<len;i++){
            temp = arr[i];
            for (j=i;j>0 && arr[j-1]>temp;j--)
                    arr[j] = arr[j-1];
            arr[j] = temp;
    }
}

希尔排序
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率
但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位

void shell_sort(int arr[], int len) {
    int gap, i, j;
    int temp;
    for (gap = len >> 1; gap > 0; gap = gap >> 1)
        for (i = gap; i < len; i++) {
            temp = arr[i];
            for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)
                arr[j + gap] = arr[j];
            arr[j + gap] = temp;
        }
}

归并排序
把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。

可从上到下或从下到上进行。
迭代法

int min(int x, int y) {
    return x < y ? x : y;
}
void merge_sort(int arr[], int len) {
    int* a = arr;
    int* b = (int*) malloc(len * sizeof(int));
    int seg, start;
    for (seg = 1; seg < len; seg += seg) {
        for (start = 0; start < len; start += seg + seg) {
            int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);
            int k = low;
            int start1 = low, end1 = mid;
            int start2 = mid, end2 = high;
            while (start1 < end1 && start2 < end2)
                b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
            while (start1 < end1)
                b[k++] = a[start1++];
            while (start2 < end2)
                b[k++] = a[start2++];
        }
        int* temp = a;
        a = b;
        b = temp;
    }
    if (a != arr) {
        int i;
        for (i = 0; i < len; i++)
            b[i] = a[i];
        b = a;
    }
    free(b);
}

递归法

void merge_sort_recursive(int arr[], int reg[], int start, int end) {
    if (start >= end)
        return;
    int len = end - start, mid = (len >> 1) + start;
    int start1 = start, end1 = mid;
    int start2 = mid + 1, end2 = end;
    merge_sort_recursive(arr, reg, start1, end1);
    merge_sort_recursive(arr, reg, start2, end2);
    int k = start;
    while (start1 <= end1 && start2 <= end2)
        reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
    while (start1 <= end1)
        reg[k++] = arr[start1++];
    while (start2 <= end2)
        reg[k++] = arr[start2++];
    for (k = start; k <= end; k++)
        arr[k] = reg[k];
}
void merge_sort(int arr[], const int len) {
    int reg[len];
    merge_sort_recursive(arr, reg, 0, len - 1);
}

快速排序
在区间中随机挑选一个元素作基准,将小于基准的元素放在基准之前,大于基准的元素放在基准之后,再分别对小数区与大数区进行排序。
迭代法

typedef struct _Range {
    int start, end;
} Range;
Range new_Range(int s, int e) {
    Range r;
    r.start = s;
    r.end = e;
    return r;
}
void swap(int *x, int *y) {
    int t = *x;
    *x = *y;
    *y = t;
}
void quick_sort(int arr[], const int len) {
    if (len <= 0)
        return; // 避免len等於負值時引發段錯誤(Segment Fault)
    // r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素
    Range r[len];
    int p = 0;
    r[p++] = new_Range(0, len - 1);
    while (p) {
        Range range = r[--p];
        if (range.start >= range.end)
            continue;
        int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點
        int left = range.start, right = range.end;
        do
        {
            while (arr[left] < mid) ++left;   // 檢測基準點左側是否符合要求
            while (arr[right] > mid) --right; //檢測基準點右側是否符合要求
 
            if (left <= right)
            {
                swap(&arr[left],&arr[right]);
                left++;right--;               // 移動指針以繼續
            }
        } while (left <= right);
 
        if (range.start < right) r[p++] = new_Range(range.start, right);
        if (range.end > left) r[p++] = new_Range(left, range.end);
    }
}

递归法

void swap(int *x, int *y) {
    int t = *x;
    *x = *y;
    *y = t;
}
void quick_sort_recursive(int arr[], int start, int end) {
    if (start >= end)
        return;
    int mid = arr[end];
    int left = start, right = end - 1;
    while (left < right) {
        while (arr[left] < mid && left < right)
            left++;
        while (arr[right] >= mid && left < right)
            right--;
        swap(&arr[left], &arr[right]);
    }
    if (arr[left] >= arr[end])
        swap(&arr[left], &arr[end]);
    else
        left++;
    if (left)
        quick_sort_recursive(arr, start, left - 1);
    quick_sort_recursive(arr, left + 1, end);
}
void quick_sort(int arr[], int len) {
    quick_sort_recursive(arr, 0, len - 1);
}

相关文章

  • 算法与数据结构(六):堆排序

    title: 算法与数据结构(六):堆排序tags: [算法与数据结构, C语言, 堆排序]date: 2019-...

  • 数据结构之排序(C语言)

    选择排序选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到...

  • 堆排序 js实现

    /* 最近 在看c语言版的数据结构,c用法着实很难,于是按照意思,仿照c语言写了javascript版的三种排序方...

  • 冒泡排序就这么简单

    冒泡排序就这么简单 在我大一的时候自学c语言和数据结构,我当时就接触到了冒泡排序(当时使用的是C语言编写的)。现在...

  • 数据结构之选择排序(C语言)

    选择排序 :对比数组中前一个元素跟后一个元素的大小,如果后面的元素比前面的元素小,则用一个变量k来记住他的位置,接...

  • 数据结构与算法-目录

    数据结构与算法-目录 C语言篇 数据结构和算法-C语言篇1-绪论数据结构和算法-C语言篇2-初识算法数据结构与算法...

  • C语言中的指针与数组

    C语言中的指针与数组 @(C语言)[排序算法, 快速排序, C实现] 引言 相信指针与数组是不少同学在初学C语言时...

  • 冒泡排序&选择排序

    在本科时学的数据结构,所以还是先用c语言描述。本文今天(2018.9.25)先讨论两种简单的排序1.冒泡排序2.选...

  • 数据结构(C语言)-快速排序

    算法思想:以第一个数作为基准,和最右端下标为h的数比较大小,如果基数小于最右端的数,h向左移,再次比较,直到基数大...

  • c语言排序算法

    c语言排序算法

网友评论

      本文标题:数据结构之排序(C语言)

      本文链接:https://www.haomeiwen.com/subject/nxietctx.html