基本数据类型
基本类型,或者叫做内置类型,是 Java 中不同于类(Class)的特殊类型。它们是我们编程中使用最频繁的类型。
Java 是一种强类型语言,第一次申明变量必须说明数据类型,第一次变量赋值称为变量的初始化。
Java 中的数值类型不存在无符号的,它们的取值范围是固定的,不会随着机器硬件环境或者操作系统的改变而改变。
实际上,Java 中还存在另外一种基本类型 void,它也有对应的包装类 java.lang.Void,不过我们无法直接对它们进行操作。
基本数据类型有什么好处
我们都知道在 Java 语言中,new 一个对象是存储在堆里的,我们通过栈中的引用来使用这些对象;所以,对象本身来说是比较消耗资源的。
对于经常用到的类型,如 int 等,如果我们每次使用这种变量的时候都需要 new 一个 Java 对象的话,就会比较笨重。所以,和 C++ 一样,Java 提供了基本数据类型,这种数据的变量不需要使用 new 创建,他们不会在堆上创建,而是直接在栈内存中存储,因此会更加高效。
包装类型
Java 语言是一个面向对象的语言,但是 Java 中的基本数据类型却是不面向对象的,这在实际使用时存在很多的不便,为了解决这个不足,在设计类时为每个基本数据类型设计了一个对应的类进行代表,这样八个和基本数据类型对应的类统称为包装类(Wrapper Class)。
包装类均位于 java.lang 包,包装类和基本数据类型的对应关系如下表所示:
基本数据类型 | 包装类 |
---|---|
byte | Byte |
boolean | Boolean |
short | Short |
char | Character |
int | Integer |
long | Long |
float | Float |
double | Double |
在这八个类名中,除了Integer和Character类以后,其它六个类的类名和基本数据类型一致,只是类名的第一个字母大写即可。
为什么需要包装类
很多人会有疑问,既然Java中为了提高效率,提供了八种基本数据类型,为什么还要提供包装类呢?
这个问题,其实前面已经有了答案,因为Java是一种面向对象语言,很多地方都需要使用对象而不是基本数据类型。比如,在集合类中,我们是无法将int 、double等类型放进去的。因为集合的容器要求元素是Object类型。
为了让基本类型也具有对象的特征,就出现了包装类型,它相当于将基本类型“包装起来”,使得它具有了对象的性质,并且为其添加了属性和方法,丰富了基本类型的操作。
拆箱与装箱
那么,有了基本数据类型和包装类,肯定有些时候要在他们之间进行转换。比如把一个基本数据类型的 int 转换成一个包装类型的 Integer 对象。
我们认为包装类是对基本类型的包装,所以,把基本数据类型转换成包装类的过程就是打包装,英文对应于 boxing,中文翻译为装箱。
反之,把包装类转换成基本数据类型的过程就是拆包装,英文对应于 unboxing,中文翻译为拆箱。
在 Java SE5 之前,要进行装箱,可以通过以下代码:
Integer i = new Integer(10);
自动拆箱与自动装箱
在 Java SE5 中,为了减少开发人员的工作,Java 提供了自动拆箱与自动装箱功能。
自动装箱: 就是将基本数据类型自动转换成对应的包装类。
自动拆箱:就是将包装类自动转换成对应的基本数据类型。
Integer i = 10; //自动装箱
int b = i; //自动拆箱
Integer i=10 可以替代 Integer i = new Integer(10);,这就是因为 Java 帮我们提供了自动装箱的功能,不需要开发者手动去 new 一个 Integer 对象。
自动装箱与自动拆箱的实现原理
既然 Java 提供了自动拆装箱的能力,那么,我们就来看一下,到底是什么原理,Java 是如何实现的自动拆装箱功能。
我们有以下自动拆装箱的代码:
public static void main(String[]args){
Integer integer=1; //装箱
int i=integer; //拆箱
}
对以上代码进行反编译后可以得到以下代码:
public static void main(String[]args){
Integer integer=Integer.valueOf(1);
int i=integer.intValue();
}
从上面反编译后的代码可以看出,int 的自动装箱都是通过 Integer.valueOf() 方法来实现的,Integer 的自动拆箱都是通过 integer.intValue 来实现的。如果读者感兴趣,可以试着将八种类型都反编译一遍 ,你会发现以下规律:
自动装箱都是通过包装类的 valueOf() 方法来实现的.自动拆箱都是通过包装类对象的 xxxValue() 来实现的。
哪些地方会自动拆装箱
我们了解过原理之后,在来看一下,什么情况下,Java 会帮我们进行自动拆装箱。前面提到的变量的初始化和赋值的场景就不介绍了,那是最简单的也最容易理解的。
我们主要来看一下,那些可能被忽略的场景。
场景一、将基本数据类型放入集合类
我们知道,Java 中的集合类只能接收对象类型,那么以下代码为什么会不报错呢?
List<Integer> li = new ArrayList<>();
for (int i = 1; i < 50; i ++) {
li.add(i);
}
将上面代码进行反编译,可以得到以下代码:
List<Integer> li = new ArrayList<>();
for (int i = 1; i < 50; i += 2){
li.add(Integer.valueOf(i));
}
以上,我们可以得出结论,当我们把基本数据类型放入集合类中的时候,会进行自动装箱。
场景二、包装类型和基本类型的大小比较
有没有人想过,当我们对 Integer 对象与基本类型进行大小比较的时候,实际上比较的是什么内容呢?看以下代码:
Integer a = 1;
System.out.println(a == 1 ? "等于" : "不等于");
Boolean bool = false;
System.out.println(bool ? "真" : "假");
对以上代码进行反编译,得到以下代码:
Integer a = 1;
System.out.println(a.intValue() == 1 ? "等于" : "不等于");
Boolean bool = false;
System.out.println(bool.booleanValue ? "真" : "假");
可以看到,包装类与基本数据类型进行比较运算,是先将包装类进行拆箱成基本数据类型,然后进行比较的。
场景三、包装类型的运算
有没有人想过,当我们对 Integer 对象进行四则运算的时候,是如何进行的呢?看以下代码:
Integer i = 10;
Integer j = 20;
System.out.println(i+j);
反编译后代码如下:
Integer i = Integer.valueOf(10);
Integer j = Integer.valueOf(20);
System.out.println(i.intValue() + j.intValue());
我们发现,两个包装类型之间的运算,会被自动拆箱成基本类型进行。
场景四、三目运算符的使用
这是很多人不知道的一个场景,作者也是一次线上的血淋淋的 Bug 发生后才了解到的一种案例。看一个简单的三目运算符的代码:
boolean flag = true;
Integer i = 0;
int j = 1;
int k = flag ? i : j;
很多人不知道,其实在 int k = flag ? i : j;
这一行,会发生自动拆箱。
反编译后代码如下:
boolean flag = true;
Integer i = Integer.valueOf(0);
int j = 1;
int k = flag ? i.intValue() : j;
System.out.println(k);
这其实是三目运算符的语法规范。当第二,第三位操作数分别为基本类型和对象时,其中的对象就会拆箱为基本类型进行操作。
因为例子中,flag ? i : j; 片段中,第二段的 i 是一个包装类型的对象,而第三段的 j 是一个基本类型,所以会对包装类进行自动拆箱。如果这个时候 i 的值为 null,那么就会发生 NPE。
场景五、函数参数与返回值
这个比较容易理解,直接上代码了:
//自动拆箱
public int getNum1(Integer num) {
return num;
}
//自动装箱
public Integer getNum2(int num) {
return num;
}
自动拆装箱与缓存
Java SE 的自动拆装箱还提供了一个和缓存有关的功能,我们先来看以下代码,猜测一下输出结果:
public static void main(String... strings) {
Integer integer1 = 3;
Integer integer2 = 3;
if (integer1 == integer2)
System.out.println("integer1 == integer2");
else
System.out.println("integer1 != integer2");
Integer integer3 = 300;
Integer integer4 = 300;
if (integer3 == integer4)
System.out.println("integer3 == integer4");
else
System.out.println("integer3 != integer4");
}
我们普遍认为上面的两个判断的结果都是 false。虽然比较的值是相等的,但是由于比较的是对象,而对象的引用不一样,所以会认为两个 if 判断都是 false 的。在 Java 中,== 比较的是对象引用,而 equals 比较的是值。所以,在这个例子中,不同的对象有不同的引用,所以在进行比较的时候都将返回 false。奇怪的是,这里两个类似的 if 条件判断返回不同的布尔值。
上面这段代码真正的输出结果:
integer1 == integer2
integer3 != integer4
原因就和 Integer 中的缓存机制有关。在 Java 5 中,在 Integer 的操作上引入了一个新功能来节省内存和提高性能。整型对象通过使用相同的对象引用实现了缓存和重用。
适用于整数值区间 -128 至 +127。
只适用于自动装箱。使用构造函数创建对象不适用。
我们只需要知道,当需要进行自动装箱时,如果数字在 -128 至 127 之间时,会直接使用缓存中的对象,而不是重新创建一个对象。
其中的 Javadoc 详细的说明了缓存支持 -128 到 127 之间的自动装箱过程。最大值 127 可以通过 -XX:AutoBoxCacheMax=size 修改。
实际上这个功能在 Java 5 中引入的时候,范围是固定的 -128 至 +127。后来在 Java 6 中,可以通过 java.lang.Integer.IntegerCache.high 设置最大值。
这使我们可以根据应用程序的实际情况灵活地调整来提高性能。到底是什么原因选择这个 -128 到 127 范围呢?因为这个范围的数字是最被广泛使用的。 在程序中,第一次使用 Integer 的时候也需要一定的额外时间来初始化这个缓存。
在 Boxing Conversion部分的Java语言规范(JLS)规定如下:
如果一个变量p的值是:
- -128 至 127 之间的整数
- true 和 false 的布尔值
- \u0000 至 \u007f 之间的字符
范围内的时,将 p 包装成 a 和 b 两个对象时,可以直接使用 a == b 判断 a 和 b 的值是否相等。
自动拆装箱带来的问题
当然,自动拆装箱是一个很好的功能,大大节省了开发人员的精力,不再需要关心到底什么时候需要拆装箱。但是,他也会引入一些问题。
包装对象的数值比较,不能简单的使用 ==,虽然 -128 到 127 之间的数字可以,但是这个范围之外还是需要使用 equals 比较。
前面提到,有些场景会进行自动拆装箱,同时也说过,由于自动拆箱,如果包装类对象为 null ,那么自动拆箱时就有可能抛出 NPE。
如果一个 for 循环中有大量拆装箱操作,会浪费很多资源。
网友评论