美文网首页
okhttp缓存大致内容(3.12)

okhttp缓存大致内容(3.12)

作者: 虚假雨 | 来源:发表于2019-08-04 14:39 被阅读0次

    在最近的工作中接触到了okhttp的缓存,借此机会记录下。网上已经有很多相关文章了,比如参考文章一还包括了http头缓存的相关介绍;但是一来自己跟代码记得比较牢,二来我比较关心缓存中lastModified和etag的设置所以需要挑重点,所以还是自己下手了。
    本文基于okhttp 3.12版本

    开启缓存

    okhttp开启缓存非常方便,只需要设置cache参数即可

    //3mb缓存
    final int cacheSize = 1024 * 1024 * 3;
    defaultBuilder = new OkHttpClient.Builder()
    .cache(new Cache(CmGameSdkConstant.getAppContext().getCacheDir(), cacheSize))
    .connectTimeout(DEFAULT_CONNECT_TIME_SEC, TimeUnit.SECONDS);
    

    这样设置之后,okhttp就开启了缓存,包括本地缓存以及浏览器相关缓存(etag、last-modify),这一点我一开始是不信的(原先没有关注这方面),看完之后就。。。真香

    缓存类Cache内部设置

    在第一步中我们开启了缓存,也就是开启了cache选项,其中传入了Cache对象。我们看看这个对象做了些什么,首先就是get,这里根据请求拿到缓存对应的回复,这里是使用LruCache做本地缓存的。

    @Nullable Response get(Request request) {
        String key = key(request.url());
        DiskLruCache.Snapshot snapshot;
        Entry entry;
        try {
          snapshot = cache.get(key);
          if (snapshot == null) {
            return null;
          }
        } catch (IOException e) {
          // Give up because the cache cannot be read.
          return null;
        }
    
        try {
          entry = new Entry(snapshot.getSource(ENTRY_METADATA));
        } catch (IOException e) {
          Util.closeQuietly(snapshot);
          return null;
        }
    
        Response response = entry.response(snapshot);
    
        if (!entry.matches(request, response)) {
          Util.closeQuietly(response.body());
          return null;
        }
    
        return response;
      }
    
      // 这里是将请求映射为url,使用md5计算
      public static String key(HttpUrl url) {
        return ByteString.encodeUtf8(url.toString()).md5().hex();
      }
    
    

    缓存任务拦截器 CacheInterceptor

    在请求流程中,是用链式分发的形式走的,大概如下:

    Response getResponseWithInterceptorChain() throws IOException {
        // Build a full stack of interceptors.
        List<Interceptor> interceptors = new ArrayList<>();
        interceptors.addAll(client.interceptors());
        interceptors.add(retryAndFollowUpInterceptor);
        interceptors.add(new BridgeInterceptor(client.cookieJar()));
        interceptors.add(new CacheInterceptor(client.internalCache()));
        interceptors.add(new ConnectInterceptor(client));
        if (!forWebSocket) {
          interceptors.addAll(client.networkInterceptors());
        }
        interceptors.add(new CallServerInterceptor(forWebSocket));
    
        Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
            originalRequest, this, eventListener, client.connectTimeoutMillis(),
            client.readTimeoutMillis(), client.writeTimeoutMillis());
    
        return chain.proceed(originalRequest);
      }
    

    其中缓存的关键类就是CacheInterceptor
    我们来看看他的拦截关键方法

    @Override public Response intercept(Chain chain) throws IOException {
        Response cacheCandidate = cache != null
            ? cache.get(chain.request())
            : null;
    

    一开始根据请求去获取缓存的回复

    拿到历史缓存后,加上当前时间构建Request以及Response对象

    long now = System.currentTimeMillis();
    
    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
    Request networkRequest = strategy.networkRequest;
    Response cacheResponse = strategy.cacheResponse;
    

    这个缓存策略CacheStrategy很重要,基本上后面的匹配都与他有关。这里根据请求和缓存回复构建,后面关于http的匹配都是在里面。

    在构造方法里,我们看到他将解决请求时间、etag以及lastModify等信息都保存下来了,为之后的缓存氢气做准备

    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
    
    //看下Factory的构造方法
     public Factory(long nowMillis, Request request, Response cacheResponse) {
          this.nowMillis = nowMillis;
          this.request = request;
          this.cacheResponse = cacheResponse;
    
          if (cacheResponse != null) {
            this.sentRequestMillis = cacheResponse.sentRequestAtMillis();
            this.receivedResponseMillis = cacheResponse.receivedResponseAtMillis();
            Headers headers = cacheResponse.headers();
            for (int i = 0, size = headers.size(); i < size; i++) {
              String fieldName = headers.name(i);
              String value = headers.value(i);
              //这里用来保存服务器时间,为之后的缓存过期做准备
              if ("Date".equalsIgnoreCase(fieldName)) {
                servedDate = HttpDate.parse(value);
                servedDateString = value;
              } else if ("Expires".equalsIgnoreCase(fieldName)) {
                expires = HttpDate.parse(value);
              } else if ("Last-Modified".equalsIgnoreCase(fieldName)) {
                lastModified = HttpDate.parse(value);
                lastModifiedString = value;
              } else if ("ETag".equalsIgnoreCase(fieldName)) {
                etag = value;
              //表示收到的时间,同样是为了后面过期做准备
              } else if ("Age".equalsIgnoreCase(fieldName)) {
                ageSeconds = HttpHeaders.parseSeconds(value, -1);
              }
            }
          }
        }
    
    

    随后我们会开始构建CacheStrategy,也就是缓存策略,缓存会最终体现在CacheStrategy的networkRequest和cacheResponse中,也就是他的构造函数。最终实现方法在getCandidate()中:

     private CacheStrategy getCandidate() {
          // No cached response.
          // 没有缓存,那直接返回
          if (cacheResponse == null) {
            return new CacheStrategy(request, null);
          }
    
          // Drop the cached response if it's missing a required handshake.
          // handshake是握手的意思,如果请求为https而且没有经过握手,那也不缓存
          if (request.isHttps() && cacheResponse.handshake() == null) {
            return new CacheStrategy(request, null);
          }
    
          // If this response shouldn't have been stored, it should never be used
          // as a response source. This check should be redundant as long as the
          // persistence store is well-behaved and the rules are constant.
          // 这里是判断是否不允许缓存,比如返回头中的no-store,注意这里同步比较了请求和返回的cache策略
          if (!isCacheable(cacheResponse, request)) {
            return new CacheStrategy(request, null);
          }
          
          // 第一个判断是请求是否允许缓存,第二个是请求中如果已经带了If-Modified-Since或者If-None-Match,说明上层自己做了缓存
          CacheControl requestCaching = request.cacheControl();
          if (requestCaching.noCache() || hasConditions(request)) {
            return new CacheStrategy(request, null);
          }
    
          CacheControl responseCaching = cacheResponse.cacheControl();
          
          //cacheResponseAge 缓存时间的计算大概如下
          //return receivedAge + responseDuration + residentDuration;
          //也就是请求到收到时间+现在使用时间
          long ageMillis = cacheResponseAge();
          //通过之前缓存的expires、last-modify等计算缓存有效期
          long freshMillis = computeFreshnessLifetime();
          
          // 如果请求中已经包含了max-age,那么我们取相对最小值
          if (requestCaching.maxAgeSeconds() != -1) {
            freshMillis = Math.min(freshMillis, SECONDS.toMillis(requestCaching.maxAgeSeconds()));
          }
          // Cache-Control相关    
          // min-fresh是指在期望的时间内响应有效
          long minFreshMillis = 0;
          if (requestCaching.minFreshSeconds() != -1) {
            minFreshMillis = SECONDS.toMillis(requestCaching.minFreshSeconds());
          }
    
          // 这个同上,mustRevalidate是指在本地副本未过期前可以使用,否则必须刷新
          long maxStaleMillis = 0;
          if (!responseCaching.mustRevalidate() && requestCaching.maxStaleSeconds() != -1) {
            maxStaleMillis = SECONDS.toMillis(requestCaching.maxStaleSeconds());
          }
    
          // 还没过期,加个warning信息返回上层,随即复用缓存
          if (!responseCaching.noCache() && ageMillis + minFreshMillis < freshMillis + maxStaleMillis) {
            Response.Builder builder = cacheResponse.newBuilder();
            if (ageMillis + minFreshMillis >= freshMillis) {
              builder.addHeader("Warning", "110 HttpURLConnection \"Response is stale\"");
            }
            long oneDayMillis = 24 * 60 * 60 * 1000L;
            if (ageMillis > oneDayMillis && isFreshnessLifetimeHeuristic()) {
              builder.addHeader("Warning", "113 HttpURLConnection \"Heuristic expiration\"");
            }
            return new CacheStrategy(null, builder.build());
          }
    
          // Find a condition to add to the request. If the condition is satisfied, the response body
          // will not be transmitted.
          // 这里也有点意思,etag优先,然后是If-Modified-Since,然后是服务器时间,进行拼接,向服务器请求
          String conditionName;
          String conditionValue;
          if (etag != null) {
            conditionName = "If-None-Match";
            conditionValue = etag;
          } else if (lastModified != null) {
            conditionName = "If-Modified-Since";
            conditionValue = lastModifiedString;
          } else if (servedDate != null) {
            conditionName = "If-Modified-Since";
            conditionValue = servedDateString;
          } else {
            // 如果这些都没有了,那只能走普通的网络请求了
            return new CacheStrategy(request, null); // No condition! Make a regular request.
          }
            
          // 最后就是我们的集大成者了,header内部是用键值对维护的
          // 我们重新修改后,生成“附带属性”的conditionalRequest
          Headers.Builder conditionalRequestHeaders = request.headers().newBuilder();
          Internal.instance.addLenient(conditionalRequestHeaders, conditionName, conditionValue);
        
          Request conditionalRequest = request.newBuilder()
              .headers(conditionalRequestHeaders.build())
              .build();
          return new CacheStrategy(conditionalRequest, cacheResponse);
        }
    

    上面是缓存的大头,构建出了我们想要的内容,同时先过滤一次网络请求,如果本地缓存可用则先用本地缓存,这个时候request是为空的。

    下面我们回到拦截方法CacheInterceptor.intercept

    // If we're forbidden from using the network and the cache is insufficient, fail
    // 这里是禁止使用网络的情况下缓存又无效,所以直接504错误
    if (networkRequest == null && cacheResponse == null) {
          return new Response.Builder()
              .request(chain.request())
              .protocol(Protocol.HTTP_1_1)
              .code(504)
              .message("Unsatisfiable Request (only-if-cached)")
              .body(Util.EMPTY_RESPONSE)
              .sentRequestAtMillis(-1L)
              .receivedResponseAtMillis(System.currentTimeMillis())
              .build();
        }
    
        // If we don't need the network, we're done.
        // 如果缓存未过期同时又没有网络,直接返回缓存结果
        if (networkRequest == null) {
          return cacheResponse.newBuilder()
              .cacheResponse(stripBody(cacheResponse))
              .build();
        }
        
        // 走到这里说明能用的缓存都用了,还是需要走网络的,交给链条的下一个
        Response networkResponse = null;
        try {
          networkResponse = chain.proceed(networkRequest);
        } finally {
          // If we're crashing on I/O or otherwise, don't leak the cache body.
          if (networkResponse == null && cacheCandidate != null) {
            closeQuietly(cacheCandidate.body());
          }
        }
        
        
        
         // If we have a cache response too, then we're doing a conditional get.
        if (cacheResponse != null) {
          if (networkResponse.code() == HTTP_NOT_MODIFIED) {
            // 如果是传说中的304,那么缓存可用,我们主动构建一个回复
            Response response = cacheResponse.newBuilder()
                .headers(combine(cacheResponse.headers(), networkResponse.headers()))
                .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
                .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
                .cacheResponse(stripBody(cacheResponse))
                .networkResponse(stripBody(networkResponse))
                .build();
            networkResponse.body().close();
    
            // Update the cache after combining headers but before stripping the
            // Content-Encoding header (as performed by initContentStream()).
            cache.trackConditionalCacheHit();
            cache.update(cacheResponse, response);
            return response;
          } else {
            closeQuietly(cacheResponse.body());
          }
        }
        
        // 否则更新response信息
        Response response = networkResponse.newBuilder()
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
    
        if (cache != null) {
          if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
            // Offer this request to the cache.
            CacheRequest cacheRequest = cache.put(response);
            return cacheWritingResponse(cacheRequest, response);
          }
    
          if (HttpMethod.invalidatesCache(networkRequest.method())) {
            try {
              cache.remove(networkRequest);
            } catch (IOException ignored) {
              // The cache cannot be written.
            }
          }
        }
        
    

    参考文章

    1. https://www.jianshu.com/p/00d281c226f6 okhttp缓存处理
    2. https://blog.csdn.net/aiynmimi/article/details/79807036 OkHttp3源码分析之缓存Cache

    相关文章

      网友评论

          本文标题:okhttp缓存大致内容(3.12)

          本文链接:https://www.haomeiwen.com/subject/nycydctx.html