01.数论

作者: 初心未来 | 来源:发表于2017-12-02 19:38 被阅读0次

    数论

    数论是纯粹数学的分支之一,主要研究整数的性质。整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。

    按研究方法来看,数论大致可分为初等数论和高等数论。初等数论是用初等方法研究的数论,它的研究方法本质上说,就是利用整数环的整除性质,主要包括整除理论、同余理论、连分数理论。高等数论则包括了更为深刻的数学研究工具。它大致包括代数数论解析数论计算数论等等。

    数学理论或在较旧的使用中,叫做算术,是专门研究整数的纯数学的分支。它有时被称为“数学女王”,因为它在原理中的基础地位。数理论家研究质数以及由整数(例如有理数字)制成的对象的属性或定义为整数的概括(例如,代数整数)。

    整数可以自己考虑或作为方程(Diophantine几何)的解决方案。通过研究以某种方式(分析数论)编码整数,素数或其他数论理论对象的分析对象(如Riemann zeta函数),通常最好地理解数论中的问题。人们还可以研究与有理数相关的实数,例如,由后者近似(Diophantine近似)。

    数理论的较旧术语是算术。到二十世纪初,它被“数学理论”所取代(“算术”一词被普通大众用来表示“基本计算”,也在数学逻辑中获得了其他含义,如在数学理论中使用术语算术在二十世纪下半叶重新获得了一些地位,这可能部分是由于法国的影响力,特别是作为数理论的形容词,优选算术。

    相关文章

      网友评论

          本文标题:01.数论

          本文链接:https://www.haomeiwen.com/subject/nyfobxtx.html