美文网首页
单例模式

单例模式

作者: 飞翔的猪宝宝 | 来源:发表于2018-06-12 09:58 被阅读0次

    JAVA设计模式之单例模式
    十种常用的设计模式

    概念:

    java中单例模式是一种常见的设计模式,单例模式的写法有好几种,这里主要介绍两种:懒汉式饿汉式
      单例模式有以下特点

    1、单例类只能有一个实例。
    2、单例类必须自己创建自己的唯一实例。
    3、单例类必须给所有其他对象提供这一实例。

    实现方式:

    a) 将被实现的类的构造方法设计成private的。
    b) 添加此类引用的静态成员变量,并为其实例化。
    c) 在被实现的类中提供公共的CreateInstance函数,返回实例化的此类,就是b中的静态成员变量。

    饿汉式:
    //饿汉式单例类.在类初始化时,已经自行实例化   
    public class Singleton1 {  
        private Singleton1() {}  
        private static final Singleton1 single = new Singleton1();  
        //静态工厂方法   
        public static Singleton1 getInstance() {  
            return single;  
        }  
    } 
    
    懒汉式:
    //懒汉式单例类.在第一次调用的时候实例化自己   
    public class Singleton {  
        private Singleton() {}  
        private static Singleton single=null;  
        //静态工厂方法   
        public static Singleton getInstance() {  
             if (single == null) {    
                 single = new Singleton();  
             }    
            return single;  
        }  
    } 
    

    懒汉式是线程不安全的,并发环境下很可能出现多个Singleton实例,要实现线程安全,有以下三种方式,都是对getInstance这个方法改造:
    1、在getInstance方法上加同步

    public static synchronized Singleton getInstance() {  
             if (single == null) {    
                 single = new Singleton();  
             }    
            return single;  
    }  
    

    2、双重检查锁定

    public static Singleton getInstance() {  
            if (singleton == null) {    
                synchronized (Singleton.class) {    
                   if (singleton == null) {    
                      singleton = new Singleton();   
                   }    
                }    
            }    
            return singleton;   
        }  
    

    3、静态内部类

    public class Singleton {    
        private static class LazyHolder {    
           private static final Singleton INSTANCE = new Singleton();    
        }    
        private Singleton (){}    
        public static final Singleton getInstance() {    
           return LazyHolder.INSTANCE;    
        }    
    }    
    

    这种比上面1、2都好一些,既实现了线程安全,又避免了同步带来的性能影响。

    饿汉式和懒汉式区别

    1、线程安全:

    饿汉式天生就是线程安全的,可以直接用于多线程而不会出现问题,

    懒汉式本身是非线程安全的,为了实现线程安全有几种写法,分别是上面的1、2、3,这三种实现在资源加载和性能方面有些区别。

    2、资源加载和性能:

    饿汉式在类创建的同时就实例化一个静态对象出来,不管之后会不会使用这个单例,都会占据一定的内存,但是相应的,在第一次调用时速度也会更快,因为其资源已经初始化完成,而懒汉式顾名思义,会延迟加载,在第一次使用该单例的时候才会实例化对象出来,第一次调用时要做初始化,如果要做的工作比较多,性能上会有些延迟,之后就和饿汉式一样了。

    至于1、2、3这三种实现又有些区别,

    第1种,在方法调用上加了同步,虽然线程安全了,但是每次都要同步,会影响性能,毕竟99%的情况下是不需要同步的。
    第2种,在getInstance中做了两次null检查,确保了只有第一次调用单例的时候才会做同步,这样也是线程安全的,同时避免了每次都同步的性能损耗。
    第3种,利用了classloader的机制来保证初始化instance时只有一个线程,所以也是线程安全的,同时没有性能损耗,所以一般我倾向于使用这一种。

    实例分析

    以下是一个单例类使用的例子,以懒汉式为例,这里为了保证线程安全,使用了双重检查锁定的方式:

    //懒汉式单例
    public class TestSingleton {  
        String name = null;  
      
        private TestSingleton() {}  
      
        private static volatile TestSingleton instance = null;  
      
        public static TestSingleton getInstance() {  
               if (instance == null) {    
                 synchronized (TestSingleton.class) {    
                    if (instance == null) {    
                       instance = new TestSingleton();   
                    }    
                 }    
               }   
               return instance;  
        }  
      
        public String getName() {  
            return name;  
        }  
      
        public void setName(String name) {  
            this.name = name;  
        }  
      
        public void printInfo() {  
            System.out.println("the name is " + name);  
        }  
    }  
    

    测试:

    public class TMain {  
        public static void main(String[] args){  
            TestStream ts1 = TestSingleton.getInstance();  
            ts1.setName("jason");  
            TestStream ts2 = TestSingleton.getInstance();  
            ts2.setName("0539");  
              
            ts1.printInfo();  
            ts2.printInfo();  
              
            if(ts1 == ts2){  
                System.out.println("创建的是同一个实例");  
            }else{  
                System.out.println("创建的不是同一个实例");  
            }  
        }  
    }  
    

    运行结果:


    结论:由结果可以得知单例模式为一个面向对象的应用程序提供了对象惟一的访问点,不管它实现何种功能,整个应用程序都会同享一个实例对象

    单例模式的优缺点:

    优点

    1.在单例模式中,活动的单例只有一个实例,对单例类的所有实例化得到的都是相同的一个实例。这样就 防止其它对象对自己的实例化,确保所有的对象都访问一个实例
    2.单例模式具有一定的伸缩性,类自己来控制实例化进程,类就在改变实例化进程上有相应的伸缩性。
    3.提供了对唯一实例的受控访问。
    4.由于在系统内存中只存在一个对象,因此可以 节约系统资源,当 需要频繁创建和销毁的对象时单例模式无疑可以提高系统的性能。
    5.允许可变数目的实例。
    6.避免对共享资源的多重占用。

    缺点

    1.不适用于变化的对象,如果同一类型的对象总是要在不同的用例场景发生变化,单例就会引起数据的错误,不能保存彼此的状态。
    2.由于单利模式中没有抽象层,因此单例类的扩展有很大的困难。
    3.单例类的职责过重,在一定程度上违背了“单一职责原则”。
    4.滥用单例将带来一些负面问题,如为了节省资源将数据库连接池对象设计为的单例类,可能会导致共享连接池对象的程序过多而出现连接池溢出;如果实例化的对象长时间不被利用,系统会认为是垃圾而被回收,这将导致对象状态的丢失。

    使用注意事项

    1.使用时不能用反射模式创建单例,否则会实例化一个新的对象
    2.使用懒单例模式时注意线程安全问题
    3.单例模式和懒单例模式构造方法都是私有的,因而是不能被继承的,有些单例模式可以被继承(如登记式模式)

    适用场景:

    单例模式只允许创建一个对象,因此节省内存,加快对象访问速度,因此对象需要被公用的场合适合使用,如多个模块使用同一个数据源连接对象等等。如:

    1.需要频繁实例化然后销毁的对象。
    2.创建对象时耗时过多或者耗资源过多,但又经常用到的对象。
    3.有状态的工具类对象。
    4.频繁访问数据库或文件的对象。

    以下都是单例模式的经典使用场景

    1.资源共享的情况下,避免由于资源操作时导致的性能或损耗等。如上述中的日志文件,应用配置。
    2.控制资源的情况下,方便资源之间的互相通信。如线程池等。

    应用场景举例:

    1.外部资源:每台计算机有若干个打印机,但只能有一个PrinterSpooler,以避免两个打印作业同时输出到打印机。内部资源:大多数软件都有一个(或多个)属性文件存放系统配置,这样的系统应该有一个对象管理这些属性文件

    1. Windows的TaskManager(任务管理器)就是很典型的单例模式(这个很熟悉吧),想想看,是不是呢,你能打开两个windows task manager吗? 不信你自己试试看哦~
    1. windows的Recycle Bin(回收站)也是典型的单例应用。在整个系统运行过程中,回收站一直维护着仅有的一个实例。
    1. 网站的计数器,一般也是采用单例模式实现,否则难以同步。
    1. 应用程序的日志应用,一般都何用单例模式实现,这一般是由于共享的日志文件一直处于打开状态,因为只能有一个实例去操作,否则内容不好追加。
    1. Web应用的配置对象的读取,一般也应用单例模式,这个是由于配置文件是共享的资源。
    1. 数据库连接池的设计一般也是采用单例模式,因为数据库连接是一种数据库资源。数据库软件系统中使用数据库连接池,主要是节省打开或者关闭数据库连接所引起的效率损耗,这种效率上的损耗还是非常昂贵的,因为何用单例模式来维护,就可以大大降低这种损耗。
    1. 多线程的线程池的设计一般也是采用单例模式,这是由于线程池要方便对池中的线程进行控制。
    1. 操作系统的文件系统,也是大的单例模式实现的具体例子,一个操作系统只能有一个文件系统。
    1. HttpApplication 也是单例的典型应用。熟悉ASP.Net(IIS)的整个请求生命周期的人应该知道HttpApplication也是单例模式,所有的HttpModule都共享一个HttpApplication实例.

    相关文章

      网友评论

          本文标题:单例模式

          本文链接:https://www.haomeiwen.com/subject/oanheftx.html