美文网首页
基于论文摘要的文本分类与关键词抽取挑战赛学习笔记

基于论文摘要的文本分类与关键词抽取挑战赛学习笔记

作者: LPL_d5fc | 来源:发表于2023-08-21 17:55 被阅读0次

    深度学习Topline:https://tvq27xqm30o.feishu.cn/docx/U1fzdqdE0o6SWnxixyrc3gnLnJg 

    大模型Topline:https://vj6fpcxa05.feishu.cn/docx/DIged2HfIojIYlxWP9Hc2x0UnVd?from=from_copylink

    huggingface上了解一下大模型的微调方法Fine-tuning https://huggingface.co/learn/nlp-course/chapter3/3?fw=pt

    一、机器学习方法baseline

    二、进阶实践-深度方法-bert_baseline

    解题思路

    使用预训练的BERT模型进行建模的思路步骤如下:

    1、数据预处理:首先,对文本数据进行预处理,包括文本清洗(如去除特殊字符、标点符号)、分词等操作。可以使用常见的NLP工具包(如NLTK或spaCy)来辅助进行预处理。

    2、构建训练所需的dataloader与dataset,构建Dataset类时,需要定义三个方法__init__,__getitem__, __len__,其中__init__方法完成类初始化,__getitem__要求返回返回内容和label,__len__方法返回数据长度

    3、构造Dataloader,在其中完成对句子进行编码、填充、组装batch等动作:

    4、定义预测模型利用预训练的BERT模型来解决文本二分类任务,我们将使用BERT模型编码中的[CLS]向量来完成二分类任务

    [CLS]就是classification的意思,可以理解为用于下游的分类任务。

    主要用于以下两种任务:

      单文本分类任务:对于文本分类任务,BERT模型在文本前插入一个[CLS]符号,并将该符号对应的输出向量作为整篇文本的语义表示,用于文本分类,如下图所示。可以理解为:与文本中已有的其它字/词相比,这个无明显语义信息的符号会更“公平”地融合文本中各个字/词的语义信息。

      在模型设计中思路就体现为我们取出文本数据经过向量化后的[CLS]向量,然后经过二分类预测层得到最终的结果。

    5、模型训练和评估:使用训练集对选定的机器学习模型进行训练,然后使用测试集进行评估。评估指标可以选择准确率、精确率、召回率、F1值等。

    6、调参优化:如果模型效果不理想,可以尝试调整特征提取的参数(如词频阈值、词袋大小等)或机器学习模型的参数,以获得更好的性能。


    (1)预训练+微调范式

    自然语言处理领域一直在发展变化,能够在各种任务上达到最优效果的模型、算法也层出不穷。最早的范式是文本表示+ 机器学习,如基础 Baseline 所演示的方法,通过将自然语言文本表示为数值向量,再建立统计机器学习模型实习下游任务。但随着深度学习的发展,自2013年,神经网络词向量登上时代舞台,神经网络逐渐成为了 NLP 的核心方法,NLP 的核心研究范式逐渐向深度学习演化。

    深度学习的研究方法,主要是通过多层的神经网络来端到端处理下游任务,将文本表示、特征工程、建模预测都融合在深度神经网络中,减少了人工特征构建的过程,显著提升了自然语言处理能力。神经网络词向量是其中的核心部分,即文本通过神经网络后的向量表示,这些向量表示能够蕴含深层语义且维度合适,后续研究往往可以直接使用以替代传统的文本表示方法,典型的应用如 Word2Vec 。

    但是,Word2Vec 是静态词向量,即对于每一个词有一个固定的向量表示,无法解决一词多义、复杂特征等问题。2018年,ELMo 模型的提出拉开了动态词向量、预训练模型的时代大幕。ELMo 模型基于双向 LSTM 架构,在训练数据上基于语言模型进行预训练,再针对下游任务进行微调,表现出了更加优越的性能,标志着预训练+微调范式的诞生。

    所谓预训练+微调范式,指先在海量文本数据上进行预训练,再针对特定的下游任务进行微调。预训练一般基于语言模型,即给定上一个词,预测下一个词。语言模型可以在所有文本数据上建模,无需人工标注,因此很容易在海量数据上进行训练。通过在海量数据上进行预训练,模型可以学习到深层的自然语言逻辑。再通过在指定的下游任务上进行微调,即针对部分人工标注的任务数据进行特定训练,如文本分类、文本生成等,来训练模型执行下游任务的能力。

    预训练+微调范式一定程度上缓解了标注数据昂贵的问题,显著提升了模型性能,但是,ELMo 使用的双向 LSTM 架构存在难以解决长期依赖、并行效果差的天生缺陷,ELMo 本身也保留了词向量作为特征输入的应用,并没能一锤定音地敲定预训练+微调范式的主流地位。2017年,Transformer 模型的提出,为自然语言处理领域带来了一个新的重要成员——Attention 架构。基于 Attention 架构,同样在2018年,OpenAI 提出的 GPT 模型基于 Transformer 模型,结合 ELMo 模型提出的预训练+微调范式,进一步刷新了众多自然语言处理任务的上限。2023年爆火出圈的 ChatGPT 就是以 GPT 模型作为基础架构的。

    从静态编码到神经网络计算的静态词向量,再到基于双向 LSTM 架构的预训练+微调范式,又诞生了基于 Transformer的预训练+微调模式,预训练模型逐步成为自然语言处理的主流。但,真正奠定预训练+微调范式的重要地位的,还是之后提出的 BERT。BERT 可以说是综合了 ELMo 和 GPT,使用预训练+微调范式,基于 Transformer 架构而抛弃了存在天生缺陷的 LSTM,又针对 GPT 仅能够捕捉单向语句关系的缺陷提出了能够捕捉深层双向语义关系的 MLM 预训练任务,从而将预训练模型推向了一个高潮。

    (2)、Transformer 与 Attention

    BERT 乃至目前正火的 LLM 的成功,都离不开 Attention 机制与基于 Attention 机制搭建的 Transformer 架构。此处简单介绍 Transformer 与 Attention 机制。

    在 Attention 机制提出之前,深度学习主要有两种基础架构:卷积神经网络(CNN)与循环神经网络(RNN)。其中,CNN 在 CV 领域表现突出,而 RNN 及其变体 LSTM 在 NLP 方向上一枝独秀。然而,RNN 架构存在两个天然缺陷:① 序列依序计算的模式限制了计算机并行计算的能力,导致 RNN 为基础架构的模型虽然参数量不算特别大,但计算时间成本却很高。 ② RNN 难以捕捉长序列的相关关系。在 RNN 架构中,距离越远的输入之间的关系就越难被捕捉,同时 RNN 需要将整个序列读入内存依次计算,也限制了序列的长度。

    针对上述两个问题, 2017年 Vaswani 等人发表了论文《Attention Is All You Need》,创造性提出了 Attention 机制并完全抛弃了 RNN 架构。Attention 机制最先源于计算机视觉领域,其核心思想为当我们关注一张图片,我们往往无需看清楚全部内容而仅将注意力集中在重点部分即可。而在自然语言处理领域,我们往往也可以通过将重点注意力集中在一个或几个 token,从而取得更高效高质的计算效果。

    Attention 机制的特点是通过计算Query(查询值)与Key(键值)的相关性为真值加权求和,从而拟合序列中每个词同其他词的相关关系。其大致计算过程如图:

    具体而言,可以简单理解为一个输入序列通过不同的参数矩阵映射为 Q、K、V 三个矩阵,其中,Q 是计算注意力的另一个句子(或词组),V 为待计算句子,K 为待计算句子中每个词的对应键。通过对 Q 和 K 做点积,可以得到待计算句子(V)的注意力分布(即哪些部分更重要,哪些部分没有这么重要),基于注意力分布对 V 做加权求和即可得到输入序列经过注意力计算后的输出,其中与 Q (即计算注意力的另一方)越重要的部分得到的权重就越高。

    而 Transformer 正是基于 Attention 机制搭建了 Encoder-Decoder(编码器-解码器)结构,主要适用于 Seq2Seq(序列到序列)任务,即输入是一个自然语言序列,输出也是一个自然语言序列。其整体架构如下:

    Transformer 由一个 Encoder,一个 Decoder 外加一个 Softmax 分类器与两层编码层构成。上图中左侧方框为 Encoder,右侧方框为 Decoder。

    由于是一个 Seq2Seq 任务,在训练时,Transformer 的训练语料为若干个句对,具体子任务可以是机器翻译、阅读理解、机器对话等。在原论文中是训练了一个英语与德语的机器翻译任务。在训练时,句对会被划分为输入语料和输出语料,输入语料将从左侧通过编码层进入 Encoder,输出语料将从右侧通过编码层进入 Decoder。Encoder 的主要任务是对输入语料进行编码再输出给 Decoder,Decoder 再根据输出语料的历史信息与 Encoder 的输出进行计算,输出结果再经过一个线性层和 Softmax 分类器即可输出预测的结果概率,整体逻辑如下图:

    Transformer 整体是一个很值得探究的话题,此处不再赘述,如有感兴趣的同学欢迎阅读原论文《Attention Is All You Need》(https://arxiv.org/pdf/1706.03762.pdf) 与基于 Pytorch 的 Transformer 源码解读:

    https://github.com/datawhalechina/thorough-pytorch/blob/main/source/%E7%AC%AC%E5%8D%81%E7%AB%A0/Transformer%20%E8%A7%A3%E8%AF%BB.md

    (3)、预训练任务

    BERT 的模型架构直接使用了 Transformer 的 Encoder 作为整体架构,其最核心的思想在于提出了两个新的预训练任务——MLM(Masked Language Model,掩码模型)和 NSP(Next Sentence Prediction,下个句子预测),而不是沿用传统的 LM(语言模型)。

    MLM 任务,是 BERT 能够深层拟合双向语义特征的基础。简单来讲,MLM 任务即以一定比例对输入语料的部分 token 进行遮蔽,替换为 (MASK)标签,再让模型基于其上下文预测还原被遮蔽的单词,即做一个完形填空任务。由于在该任务中,模型需要针对 (MASK) 标签左右的上下文信息来预测标签本身,从而会充分拟合双向语义信息。

    例如,原始输入为 I like you。以30%的比例进行遮蔽,那么遮蔽之后的输入可能为:I (MASK) you。而模型的任务即为基于该输入,预测出 (MASK) 标签对应的单词为 like。

    NSP 任务,是 BERT 用于解决句级自然语言处理任务的预训练任务。BERT 完全采用了预训练+微调的范式,因此着重通过预训练生成的模型可以解决各种多样化的下游任务。MLM 对 token 级自然语言处理任务(如命名实体识别、关系抽取等)效果极佳,但对于句级自然语言处理任务(如句对分类、阅读理解等),由于预训练与下游任务的模式差距较大,因此无法取得非常好的效果。NSP 任务,是将输入语料都整合成句对类型,句对中有一半是连贯的上下句,标记为 IsNext,一半则是随机抽取的句对,标记为 NotNext。模型则需要根据输入的句对预测是否是连贯上下句,即预测句对的标签。

    例如,原始输入句对可能是 (I like you ; Because you are so good) 以及 (I like you; Today is a nice day)。而模型的任务即为对前一个句对预测 IsNext 标签,对后一个句对预测 NotNext 标签。

    基于上述两个预训练任务,BERT 可以在预训练阶段利用大量无标注文本数据实现深层语义拟合,从而取得良好的预测效果。同时,BERT 追求预训练与微调的深层同步,由于 Transformer 的架构可以很好地支持各类型的自然语言处理任务,从而在 BERT 中,微调仅需要在预训练模型的最顶层增加一个 SoftMax 分类层即可。同样值得一提的是,由于在实际下游任务中并不存在 MLM 任务的遮蔽,因此在策略上进行了一点调整,即对于选定的遮蔽词,仅 80% 的遮蔽被直接遮蔽,其余将有 10% 被随机替换,10% 被还原为原单词。

    Bert分词--编码(输入输出的形式):BERT-分词和编码 - 知乎 (zhihu.com)

    分类任务的输入语句在被输入BERT模型之前将经历以下步骤

    1、标记化:将句子分解为tokens

    2、在句子的开头添加[CLS] token

    3、在句子的末尾添加[SEP] token

    4、用[PAD] token填充句子,以使总长度等于最大长度

    5、将每个token转换为模型中相应的ID

    微调(Finetune)----对预训练模型做改造

    update networkparameters by gradient descent语言模型训练后的参数,作为初始参数,进行gradient descent,就是微调。

    三、bert-topline(RoBERTa)

    是相比于bert的强化版本

    去掉下一句预测(NSP)任务

    动态掩码。BERT 依赖随机掩码和预测 token。原版的 BERT 实现在数据预处理期间执行一次掩码,得到一个静态掩码。 而 RoBERTa 使用了动态掩码:每次向模型输入一个序列时都会生成新的掩码模式。这样,在大量数据不断输入的过程中,模型会逐渐适应不同的掩码策略,学习不同的语言表征。

    文本编码。Byte-Pair Encoding(BPE)是字符级和词级别表征的混合,支持处理自然语言语料库中的众多常见词汇。原版的 BERT 实现使用字符级别的 BPE 词汇,大小为 30K,是在利用启发式分词规则对输入进行预处理之后学得的。Facebook 研究者没有采用这种方式,而是考虑用更大的 byte 级别 BPE 词汇表来训练 BERT,这一词汇表包含 50K 的 subword 单元,且没有对输入作任何额外的预处理或分词。

    (1)动态掩码与静态掩码

    原始静态mask

    BERT中是准备训练数据时,每个样本只会进行一次随机mask(因此每个epoch都是重复),后续的每个训练步都采用相同的mask,这是原始静态mask,即单个静态mask,这是原始 BERT 的做法。

    修改版静态mask:

    在预处理的时候将数据集拷贝 10 次,每次拷贝采用不同的 mask(总共40 epochs,所以每一个mask对应的数据被训练4个epoch)。这等价于原始的数据集采用10种静态 mask 来训练 40个 epoch。

    动态mask:

    并没有在预处理的时候执行 mask,而是在每次向模型提供输入时动态生成 mask,所以是时刻变化的。

    不同模式的实验效果如下表所示。其中 reference 为BERT 用到的原始静态 mask,static 为修改版的静态mask。

    四、进阶实现----大模型方法

    大模型介绍

    近些年,研究人员通过在大规模语料库上预训练 Transformer 模型产生了预训练语言模型(PLMs),并在解决各类 NLP 任务上展现出了强大的能力。并且研究人员发现模型缩放可以带来性能提升,因此他们通过将模型规模增大进一步研究缩放的效果。有趣的是,当参数规模超过一定水平时,这个更大的语言模型实现了显著的性能提升,并出现了小模型中不存在的能力,比如上下文学习。为了区别于 PLM,这类模型被称为大型语言模型(LLMs)。从 2019 年的谷歌 T5 到 OpenAI GPT 系列,参数量爆炸的大模型不断涌现。

    大模型是什么?

    通常,大型语言模型(LLM)是指包含数千亿(或更多)参数的语言模型,这些参数是在大量文本数据上训练的,例如模型 GPT-3、PaLM、Galactica 和 LLaMA。具体来说,LLM 建立在 Transformer 架构之上,其中多头注意力层堆叠在一个非常深的神经网络中现有的 LLM 主要采用与小语言模型类似的模型架构(即 Transformer)和预训练目标(即语言建模)。作为主要区别,LLM 在很大程度上扩展了模型大小、预训练数据和总计算量(扩大倍数)。他们可以更好地理解自然语言,并根据给定的上下文(例如 prompt)生成高质量的文本。这种容量改进可以用标度律进行部分地描述,其中性能大致遵循模型大小的大幅增加而增加。然而根据标度律,某些能力(例如,上下文学习)是不可预测的,只有当模型大小超过某个水平时才能观察到。

    像chatgpt、claude AI、文心一言、讯飞星火和通义千问一样的,这种模型通过对大量的文本数据进行学习,可以理解和生成人类的自然语言,甚至可以编程、写数学题。

    大模型的原理

    大语言模型的语言生成的原理叫做自回归模型,是统计上一种处理时间序列的方法。例如现在有一个句子:“我早上去了星巴克”,将其拆分为“我”、“早上”、“去了”、“星巴克”这四个词(我们叫做 token)。大语言模型是这样去学习的:第一个单词是,输入到模型中。经过了一个Transformer模块后,它输出希望被训练成第一个字,也就是“我”。

    在第二个位置,它的输入是“我”,它的输出是“早上”,第三个位置输入是“早上”,输出是“去了”,这样不断地一轮一轮迭代,每个细胞能够根据我现在的这个单词,去预测下一个单词。最后这个模型就能够学到,“我早上去了星巴克”的下一句话应该是“星巴克里的咖啡很好喝”,它认为生成“星巴克里的咖啡很好喝”比“我明天要去乘飞机”这样一句话合理得多。

    自回归模型的关键是根据你前面已经出现过的内容,来推测它的下一个字,下一句话应该是怎样生成的,在这样不断的迭代过程中,它就能学会如何去生成一句话、一个段落,以及一篇文章。

    总的来说,LLM可以理解为大规模的语言模型。从历史的角度来看,前面说的BERT和GPT并没有达到足够大的规模。直到GPT-2、GPT-3出现了,它们才达到了较大的量级。大家发现语言模型爆炸式增长,从一个细胞长成一个脑子,这种程度上的增长才带来了LLMs。所以我们一般理解LLMs,这个语言模型规模大到了至少到GPT-1或2阶段,它的参数量能够突破1亿或者10亿阶段才能称之为大模型。

    大模型是如何训练的?

    OpenAI 开发 ChatGPT 的三个主要步骤:大尺寸预训练+指令微调+RLHF

    1、大尺寸预训练:在这个阶段,模型在大规模的文本数据集上进行预训练。这是一个非监督学习的过程,模型需要预测在给定的文本序列中下一个词是什么。预训练的目标是让模型学会理解和生成人类语言的基本模式。

    2、指令微调:在预训练之后,模型会在一个更小但专门针对特定任务的数据集上进行微调。这个数据集通常由人工生成,包含了模型需要学会的任务的特定指令。例如,如果我们想要让模型学会如何进行数学计算,我们就需要提供一些包含数学问题和对应解答的数据。

    3、RLHF(Reinforcement Learning from Human Feedback):这是一个强化学习过程,模型会根据人类提供的反馈进行学习和优化。首先,我们会收集一些模型的预测结果,并让人类评估这些结果的好坏。然后,我们会使用这些评估结果作为奖励,训练模型优化其预测性能。通过这种方式,模型可以学会生成更符合人类期望的结果。

    通过这三个步骤,模型能够在理解和生成人类语言的基础上,更好地完成特定任务,更好地符合人类的期望。

    Prompt

    Prompt顾名思义表示「提示」,比如在高中时代,英语考试中的完形填空,有 4 个提示选项,我们只需要在 4 个里面选择合适的一个作为答案即可。在大语言模型中,提示模型输出我们想要的答案,这里就需要Prompt。(相关课程链接:https://github.com/datawhalechina/prompt-engineering-for-developers)

    大模型微调介绍

    什么是大模型微调

    将预训练好的语言模型(LM)在下游任务上进行微调已成为处理 NLP 任务的一种范式。与使用开箱即用的预训练 LLM (例如:零样本推理) 相比,在下游数据集上微调这些预训练 LLM 会带来巨大的性能提升。

    但是,随着模型变得越来越大,在消费级硬件上对模型进行全部参数的微调(full fine-tuning)变得不可行。

    此外,为每个下游任务独立存储和部署微调模型变得非常昂贵,因为微调模型(调整模型的所有参数)与原始预训练模型的大小相同。

    因此,近年来研究者们提出了各种各样的参数高效迁移学习方法(Parameter-efficient Transfer Learning),即固定住Pretrain Language model(PLM)的大部分参数,仅调整模型的一小部分参数来达到与全部参数的微调接近的效果(调整的可以是模型自有的参数,也可以是额外加入的一些参数)

    微调方法介绍

    参考https://blog.csdn.net/sinat_39620217/article/details/131751780

    1、LoRA(Low-Rank Adaptation):它的基本思想是对模型的一部分进行低秩适应,即找到并优化那些对特定任务最重要的部分。也就是冻结预训练好的模型权重参数,在冻结原模型参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。由于这些新增参数数量较少,这样不仅 finetune 的成本显著下降,还能获得和全模型微调类似的效果。这种方法可以有效地减少模型的复杂性,同时保持模型在特定任务上的表现。对 Transformer 的每一层结构都采用 LoRA 微调的方式,最终可以使得模型微调参数量大大减少。当部署到生产环境中时,只需要计算和存储W=W0+BA,并像往常一样执行推理。与其它方法相比,没有额外的延迟,因为不需要附加更多的层。

    P-tuning v2 官方介绍https://www.bilibili.com/video/BV1fd4y1Z7Y5

    2、P-tuning v2:P-tuning v2是一种新的微调方法,也是chatglm官方仓库使用的微调方法。它的基本思想是在原有的大型语言模型上添加一些新的参数,这些新的参数可以帮助模型更好地理解和处理特定的任务。具体来说,P-tuning v2首先确定模型在处理特定任务时需要的新的参数(这些参数通常是模型的某些特性或功能),然后在模型中添加这些新的参数,以提高模型在特定任务上的表现。

    相关文章

      网友评论

          本文标题:基于论文摘要的文本分类与关键词抽取挑战赛学习笔记

          本文链接:https://www.haomeiwen.com/subject/obkjmdtx.html