在堆里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”(“死去”即不可能再被任何途径使用的对象)了。
引用计数法
在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。
优点
引用计数算法(Reference Counting)虽然占用了一些额外的内存空间来进行计数,但它的原理简单,判定效率也很高。
缺点
有很多例外情况要考虑,必须要配合大量额外处理才能保证正确地工作,譬如单纯的引用计数就很难解决对象之间相互循环引用的问题。
所以,在Java领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存。
public class ReferenceCountingGC {
public Object instance = null;
private static final int _1MB = 1024 * 1024;
/**
* 这个成员属性的唯一意义就是占点内存,以便能在GC日志中看清楚是否有回收过
*/
private byte[] bigSize = new byte[2 * _1MB];
// testGC()方法执行后,objA和objB会不会被GC呢?
public static void testGC() {
ReferenceCountingGC objA = new ReferenceCountingGC();
ReferenceCountingGC objB = new ReferenceCountingGC();
objA.instance = objB;
objB.instance = objA;
objA = null;
objB = null; // 假设在这行发生GC,objA和objB是否能被回收?
}
public static void main(String[] args) {
ReferenceCountingGC.testGC();
}
// 输出结果
[Full GC (System) [Tenured: 0K->210K(10240K), 0.0149142 secs] 4603K->210K(19456K), [Perm : 2999K->2999K(21248K)], 0.0150007 secs] [Times: user=0.01 sys=0.00, real=0.02 secs] Heap def new generation total 9216K, used 82K [0x00000000055e0000, 0x0000000005fe0000, 0x0000000005fe0000) Eden space 8192K, 1% used [0x00000000055e0000, 0x00000000055f4850, 0x0000000005de0000) from space 1024K, 0% used [0x0000000005de0000, 0x0000000005de0000, 0x0000000005ee0000) to space 1024K, 0% used [0x0000000005ee0000, 0x0000000005ee0000, 0x0000000005fe0000) tenured generation total 10240K, used 210K [0x0000000005fe0000, 0x00000000069e0000, 0x00000000069e0000) the space 10240K, 2% used [0x0000000005fe0000, 0x0000000006014a18, 0x0000000006014c00, 0x00000000069e0000) compacting perm gen total 21248K, used 3016K [0x00000000069e0000, 0x0000000007ea0000, 0x000000000bde0000) the space 21248K, 14% used [0x00000000069e0000, 0x0000000006cd2398, 0x0000000006cd2400, 0x0000000007ea0000) No shared spaces configured.
}
从运行结果中可以清楚看到内存回收日志中包含“4603K->210K”,意味着虚拟机并没有因为这两个对象互相引用就放弃回收它们,这也从侧面说明了Java虚拟机并不是通过引用计数算法来判断对象是否存活的。
可达性分析算法
当前主流的商用程序语言(Java、C#,上溯至前面提到的古老的Lisp)的内存管理子系统,都是通过可达性分析(Reachability Analysis)算法来判定对象是否存活的。
这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连,或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。
利用可达性分析算法判定对象是否可回收GC Roots
在Java技术体系里面,固定可作为GC Roots的对象包括以下几种:
- 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
- 在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。
- 在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
- Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
- 所有被同步锁(synchronized关键字)持有的对象。
- 反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。
除了这些固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。如果只针对Java堆中某一块区域发起垃圾收集时(如最典型的只针对新生代的垃圾收集),某个区域里的对象完全有可能被位于堆中其他区域的对象所引用,这时候就需要将这些关联区域的对象也一并加入GC Roots集合中去,才能保证可达性分析的正确性。
引用
无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象是否引用链可达,判定对象是否存活都和“引用”离不开关系。
为什么要有四种引用类型
在JDK 1.2版之前,Java里面的引用是很传统的定义:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称该reference数据是代表某块内存、某个对象的引用。
一个对象在这种定义下只有“被引用”或者“未被引用”两种状态,对于描述一些“食之无味,弃之可惜”的对象就显得无能为力。
譬如我们希望能描述一类对象:当内存空间还足够时,能保留在内存之中,如果内存空间在进行垃圾收集后仍然非常紧张,那就可以抛弃这些对象——很多系统的缓存功能都符合这样的应用场景。
四种引用类型
在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Re-ference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。
强引用(Strongly Re-ference)
强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
软引用(Soft Reference)
用来描述一些还有用,但非必须的对象。
只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。
在JDK 1.2版之后提供了SoftReference类来实现软引用。
弱引用
也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。
在JDK 1.2版之后提供了WeakReference类来实现弱引用。
虚引用
虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。
作用 :只是为了能在这个对象被收集器回收时收到一个系统通知。
在JDK 1.2版之后提供了PhantomReference类来实现虚引用。实例化PhantomReference需要传入一个队列,当 引用的对象被回收时, 队列可以poll到值。
public static void main(String[] args) {
ReferenceQueue referenceQueue = new ReferenceQueue();
PhantomReference<Object> p = new PhantomReference<>(new A(), referenceQueue);
System.gc();
Reference r;
for (; ; ) {
if((r = referenceQueue.poll()) != null){
// 可以打印,PhantomReference.get()永远也获取不到值
System.out.println("PhantomReference实例引用的对象已被回收");
}
}
}
可达性分析算法中判定为不可达的对象也可能不会被回收
即使在可达性分析算法中判定为不可达的对象,也不是“非死不可”的,这时候它们暂时还处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:
- 第一次标记 : 可达性分析算法中判定为不可达。
- 第二次标记 :判断对象是否需要执行finalize()方法:覆盖了finalize()方法,或者finalize()方法已经被虚拟机调用过。
finalize()方法
如果这个对象被判定为确有必要执行finalize()方法,把对象放到F-Queue 对于队列中,jvm自动建立的,调度优先级较低的Finalizer线程去执行他们的finallize()方法。
执行的时候jvm并不承诺一定会等待方法执行完,怕 某个对象的finallize()方法执行的慢,或者是死循环, 会使F-Queue 队列永久阻塞住。
finalize()逃脱回收
finalize()方法是对象逃脱死亡命运的最后一次机会 :执行完队列中对象的finallize()方法后, 收集器会再次标记F-Queue里的对象, 如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移出“即将回收”的集合;否则就只能被回收了。
一次对象自我拯救的演示
/** * 此代码演示了两点: *
1.对象可以在被GC时自我拯救。 *
2.这种自救的机会只有一次,因为一个对象的finalize()方法最多只会被系统自动调用一次 * @author zzm */
public class FinalizeEscapeGC {
public static FinalizeEscapeGC SAVE_HOOK = null;
public void isAlive() {
System.out.println("yes, i am still alive :)");
}
@Override
protected void finalize() throws Throwable {
super.finalize();
System.out.println("finalize method executed!");
FinalizeEscapeGC.SAVE_HOOK = this;
}
public static void main(String[] args) throws Throwable {
SAVE_HOOK = new FinalizeEscapeGC();
//对象第一次成功拯救自己
SAVE_HOOK = null;
System.gc();
//因为Finalizer方法优先级很低,暂停0 .5 秒,以等待它 Thread.sleep(500);
if (SAVE_HOOK != null) {
SAVE_HOOK.isAlive();
} else {
System.out.println("no, i am dead :(");
}
//下面这段代码与上面的完全相同,但是这次自救却失败了
SAVE_HOOK = null;
System.gc();
// 因为Finalizer方法优先级很低,暂停0 .5 秒,以等待它 Thread.sleep(500);
if (SAVE_HOOK != null) {
SAVE_HOOK.isAlive();
} else {
System.out.println("no, i am dead :(");
}
}
}
运行结果
inalize method executed! yes, i am still alive :) no, i am dead :(
它的运行代价高昂,不确定性大,无法保证各个对象的调用顺序,如今已被官方明确声明为不推荐使用的语法。
方法区的回收
《Java虚拟机规范》中提到过可以不要求虚拟机在方法区中实现垃圾收集。事实上也确实有未实现或未能完整实现方法区类型卸载的收集器存在(如JDK 11时期的ZGC收集器就不支持类卸载)。
方法区垃圾收集的“性价比”通常也是比较低的:在Java堆中,尤其是在新生代中,对常规应用进行一次垃圾收集通常可以回收70%至99%的内存空间,相比之下,方法区回收囿于苛刻的判定条件,其区域垃圾收集的回收成果往往远低于此。
方法区的垃圾收集主要回收两部分内容:废弃的常量和不再使用的类型。
废弃的常量
回收废弃常量与回收Java堆中的对象非常类似。假如一个字符串“java”曾经进入常量池中,但是当前系统又没有任何一个字符串对象的值是“java”,换句话说,已经没有任何字符串对象引用常量池中的“java”常量,且虚拟机中也没有其他地方引用这个字面量。如果在这时发生内存回收,而且垃圾收集器判断确有必要的话,这个“java”常量就将会被系统清理出常量池。
常量池中其他类(接口)、方法、字段的符号引用也与此类似。
不再使用的类型
判定一个类型是否属于“不再被使用的类”的条件就比较苛刻了。需要同时满足下面三个条件:
- 该类所有的实例都已经被回收,也就是Java堆中不存在该类及其任何派生子类的实例。
- 加载该类的类加载器已经被回收,这个条件除非是经过精心设计的可替换类加载器的场景,如OSGi、JSP的重加载等,否则通常是很难达成的。
- 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
Java虚拟机被允许对满足上述三个条件的无用类进行回收,这里说的仅仅是“被允许”,而并不是和对象一样,没有引用了就必然会回收。
关于是否要对类型进行回收,HotSpot虚拟机提供了-Xnoclassgc参数进行控制,还可以使用
-verbose:class以及
-XX:+TraceClass-Loading、
-XX:+TraceClassUnLoading查看类加载和卸载信息,
其中-verbose:class和-XX:+TraceClassLoading可以在Product版的虚拟机中使用,-XX:+TraceClassUnLoading参数需要FastDebug版的虚拟机支持。
网友评论