NumPy 超详细教程(1):NumPy 数组

作者: 0de1595b4560 | 来源:发表于2019-04-01 21:16 被阅读28次

    Numpy 是 Python 中科学计算的核心库,NumPy 这个词来源于 Numerical 和 Python 两个单词。它提供了一个高性能的多维数组对象,以及大量的库函数和操作,可以帮助程序员轻松地进行数值计算,广泛应用于机器学习模型、图像处理和计算机图形学、数学任务等领域。

    Numpy 数组:ndarray

    NumPy 中定义的最重要的对象是称为 ndarray 的 N 维数组类型,它是描述相同类型的元素集合。ndarray 中的每个元素都是数据类型对象(dtype)的对象。ndarray 中的每个元素在内存中使用相同大小的块。

    numpy.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)

    参数 描述
    object 任何暴露数组接口方法的对象
    dtype 数据类型
    copy 如果为 True,则 object 对象被复制,否则,只有当array返回副本,object 是嵌套序列,或者需要副本来满足任何其他要求(dtype,order等)时,才会生成副本。
    order 指定阵列的内存布局。 如果 object 不是数组,则新创建的数组将按行排列(C),如果指定了(F),则按列排列。 如果 object 是一个数组,则以下成立。C(按行)、F(按列)、A(原顺序)、K(元素在内存中的出现顺序)
    subok 默认情况下,返回的数组被强制为基类数组。 如果为 True,则返回子类。
    ndmin 返回数组的最小维数

    例一:最简单的示例

    import numpy as np
    
    a = [1, 2, 3]
    b = np.array(a)
    
    print(b)
    print(type(b))
    

    输出:

    [1 2 3]
    <class 'numpy.ndarray'>
    

    注意:list 打印显示是 [1, 2, 3],而 ndarray 打印显示是 [1 2 3],当中没有逗号。

    例二:dtype 参数用法示例

    NumPy 支持比 Python 更多种类的数值类型

    import numpy as np
    
    a = [1, 2, 3]
    b = np.array(a, dtype=np.float_)
    # 或者
    b = np.array(a, dtype=float)
    
    print(b)
    print(b.dtype)
    print(type(b[0]))
    

    输出:

    [1. 2. 3.]
    float64
    <class 'numpy.float64'>
    

    例三:copy 参数的用法

    import numpy as np
    
    a = np.array([1, 2, 3])
    b = np.array(a, copy=True)
    a[0] = 0
    
    print(a)
    print(b)
    

    输出:

    [0 2 3]
    [1 2 3]
    

    可以看到 ab的值不同,说明ba的副本,两个是不同的对象。

    import numpy as np
    
    a = np.array([1, 2, 3])
    b = np.array(a, copy=False)
    a[0] = 0
    
    print(a)
    print(b)
    

    输出:

    [0 2 3]
    [0 2 3]
    

    a 改变同时引起了b的改变,说明ab 指向的是同一个对象。

    例四:ndmin 参数用法示例

    import numpy as np
    
    a = [1, 2, 3]
    b = np.array(a, ndmin=2)
    
    print(b)
    

    输出:

    [[1 2 3]]

    可以看到结果已经变成了二维数组。

    例五:subok 参数用法示例

    看解释不是很清楚,看下面这个例子就会明白许多。其中 matrix 是矩阵,将在之后的内容中介绍。

    import numpy as np
    
    a = np.matrix('1 2 7; 3 4 8; 5 6 9')
    print(type(a))
    print(a)
    at = np.array(a, subok=True)
    af = np.array(a, subok=False)
    print(type(at))
    print(type(af))
    

    输出:

    <class 'numpy.matrix'>
    [[1 2 7]
     [3 4 8]
     [5 6 9]]
    <class 'numpy.matrix'>
    <class 'numpy.ndarray'>
    

    NumPy 数组属性

    NumPy 数组的维度(又称维数)称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
    NumPy 中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。

    属性 说明
    ndarray.ndim 秩,即轴的数量或维度的数量
    ndarray.shape 数组的维度,对于矩阵,n 行 m 列
    ndarray.size 数组元素的总个数,相当于 .shape 中 n*m 的值
    ndarray.dtype ndarray 对象的元素类型
    ndarray.itemsize ndarray 对象中每个元素的大小,以字节为单位
    ndarray.flags ndarray 对象的内存信息
    ndarray.real ndarray 元素的实部(复数的实部)
    ndarray.imag ndarray 元素的虚部(复数的虚部)
    ndarray.data 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

    1、ndarray.shape

    返回一个包含数组维度的元组,对于矩阵,n 行 m 列,它也可以用于调整数组维度。

    例一:

    import numpy as np
    
    a = np.array([[1, 2, 3], [4, 5, 6]])
    print(a.shape)
    

    输出:

    (2, 3)
    

    例二:

    import numpy as np
    
    a = np.array([[1, 2, 3], [4, 5, 6]])
    a.shape = (3, 2)
    print(a)
    

    输出:

    [[1 2]
     [3 4]
     [5 6]]
    

    例三:

    NumPy 也提供了reshape() 函数来调整数组维度。只是 reshape()返回调整维度后的副本,而不改变原 ndarray。

    import numpy as np
    
    a = np.array([[1, 2, 3], [4, 5, 6]])
    b = a.reshape(3, 2)
    print(b)  # a 没变
    

    输出:

    [[1 2]
     [3 4]
     [5 6]]
    

    2、ndarray.ndim

    返回数组的维度(秩)。

    例一:

    import numpy as np
    
    a = np.arange(24)
    print(a.ndim)
    
    # 现在调整其大小
    b = a.reshape(2, 4, 3)
    print(b.ndim)
    

    输出:

    1
    3
    

    3、ndarray.flags

    ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:

    属性 描述
    C_CONTIGUOUS 数据是在一个单一的C风格的连续段中
    F_CONTIGUOUS 数据是在一个单一的Fortran风格的连续段中
    OWNDATA 数组拥有它所使用的内存或从另一个对象中借用它
    WRITEABLE 数据区域可以被写入,将该值设置为 False,则数据为只读
    ALIGNED 数据和所有元素都适当地对齐到硬件上
    WRITEBACKIFCOPY UPDATEIFCOPY 已弃用,由 WRITEBACKIFCOPY 取代;
    UPDATEIFCOPY 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新
    import numpy as np
    
    a = np.array([[1, 2, 3], [4, 5, 6]])
    print(a.flags)
    

    输出:

    C_CONTIGUOUS : True
    F_CONTIGUOUS : False
    OWNDATA : True
    WRITEABLE : True
    ALIGNED : True
    WRITEBACKIFCOPY : False
    UPDATEIFCOPY : False
    

    4、ndarray.real

    import numpy as np
    
    x = np.sqrt([1+0j, 0+1j])
    print(x)
    print(x.real)
    print(x.real.dtype)
    

    输出:

    [1.        +0.j         0.70710678+0.70710678j]
    [1.         0.70710678]
    float64
    

    NumPy 中的常数

    正无穷:Inf = inf = infty = Infinity = PINF
    负无穷:NINF
    正零:PZERO
    负零:NZERO
    非数值:nan = NaN = NAN
    自然数e:e
    π:pi
    伽马:euler_gamma
    None 的别名:newaxis
    示例:

    print(np.inf)
    print(np.NINF)
    print(np.PZERO)
    print(np.NZERO)
    print(np.nan)
    print(np.e)
    print(np.pi)
    print(np.euler_gamma)
    print(np.newaxis)
    

    输出:

    inf
    -inf
    0.0
    -0.0
    nan
    2.718281828459045
    3.141592653589793
    0.5772156649015329
    None
    

    NumPy 创建数组

    1、numpy.empty

    此方法用来创建一个指定维度(shape)、数据类型(dtype)的未初始化的数组。

    numpy.empty(shape, dtype=float, order='C')

    参数 描述
    shape 一个表示数组维度的元组
    dtype 数据类型
    order 有 "C" 和 "F" 两个选项

    示例:

    import numpy as np
    
    x = np.empty([3, 2], dtype=int)
    print(x)
    

    输出:

    [[         0 1072693248]
     [         0 1072693248]
     [         0 1072693248]]
    

    empty() 方法和zeros()方法不同,不会将数组值设置为零,因此可能会略微加快。另一方面,它要求用户手动设置数组中的所有值,并应谨慎使用。

    2、numpy.zeros

    创建指定维度,以 0 填充的新数组。

    numpy.zeros(shape, dtype=float, order='C')

    示例:

    import numpy as np
    
    x = np.zeros(5)
    print(x)
    

    输出:

    [0. 0. 0. 0. 0.]

    注意:默认是 float 类型的

    3、numpy.ones

    创建指定维度,以 1 填充的新数组。

    numpy.ones(shape, dtype=float, order='C')

    示例:

    import numpy as np
    
    x = np.ones(5)
    print(x)
    

    输出:

    [1. 1. 1. 1. 1.]

    4、numpy.full

    返回给定维度和类型的新数组,填充 fill_value。

    numpy.full(shape, fill_value, dtype=None, order='C')

    参数 描述
    shape 返回数组的维度
    fill_value 填充值
    dtype 返回数组的数据类型,默认值 None 指:np.array(fill_value).dtype
    order 在计算机内存中的存储元素的顺序,只支持 'C'(按行)、'F'(按列),默认 'C'

    示例:

    import numpy as np
    
    a = np.full((2, 3), 9)
    print(a)
    

    输出:

    [[9 9 9]
     [9 9 9]]
    

    NumPy 从数值范围创建数组

    1、numpy.arange

    该函数等效于 Python 内置 range 函数,但返回的是 ndarray 而不是列表。

    arange([start,] stop[, step,], dtype=None)

    [ ] 括起来的表示可选参数。

    参数 描述
    start 起始值,默认为 0
    stop 终止值(不包含)
    step 步长,默认为1
    dtype 创建的 ndarray 的数据类型,如果没有提供,则会使用输入数据的类型。

    示例:

    import numpy as np
    
    a = np.arange(5)
    b = np.arange(10, 20, 2)
    print(a)
    print(b)
    

    输出:

    [0 1 2 3 4]
    [10 12 14 16 18]
    

    2、numpy.linspace

    创建一个一维等差数列的数组,与 arange 函数不同,arange 是固定步长,而linspace 则是固定元素数量。

    linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

    参数 描述
    start 序列的起始值
    stop 序列的终止值,如果 endpoint 为 True,则该值包含于数列中
    num 要生成的等步长的样本数量,默认为 50
    endpoin t 该值为 Ture 时,数列中中包含 stop 值,反之不包含,默认是 True。
    retstep 如果为 True 时,生成的数组中会显示间距,反之不显示。
    dtype ndarray 的数据类型

    例一:endpoint 参数的用法

    我特意挑了下面这个除不尽的例子来显示 endpoint 的效果。可以看到,endpoint=False 取值是 endpoint=True,并且num = num + 1 的结果去掉终止值。这话有点拗口啊,对比一下下例中的num 参数值及输出结果就明白了。

    import numpy as np
    
    a = np.linspace(0, 5, 3, endpoint=False)
    b = np.linspace(0, 5, 4, endpoint=True)
    
    print(a)
    print(b)
    

    输出:

    [0.         1.66666667 3.33333333]
    [0.         1.66666667 3.33333333 5.        ]
    

    例二:retstep 参数的用法

    返回一个元组,第一个元素是 numpy.ndarray,第二个元素是步长。

    import numpy as np
    
    a = np.linspace(0, 10, 5, retstep=True)
    print(a)
    

    输出:

    (array([ 0. , 2.5, 5. , 7.5, 10. ]), 2.5)

    例三:dtype 参数

    dtype 参数指定后会将结果强制转换成 dtype 指定的类型,如果是 float 转 int,最终值就可能不是等差的了。

    import numpy as np
    
    a = np.linspace(0, 10, 5, dtype=int)
    print(a)
    

    输出:

    [ 0 2 5 7 10]

    3、numpy.logspace

    numpy.logspace函数用于创建一个等比数列。

    numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)

    参数 描述
    start 序列的起始值为:base ** start (幂运算)
    stop 序列的终止值为:base ** stop。如果 endpoint 为 True,该值包含于数列中
    num 要生成的等步长的样本数量,默认为50
    endpoint 该值为 Ture 时,数列中中包含 stop 值,反之不包含,默认是 True。
    base 对数 log 的底数。
    dtype ndarray 的数据类型

    示例:

    其实没啥好说的,主要是注意 start 参数的值并非是真正的起始值。

    import numpy as np
    
    a = np.logspace(1, 4, num=4)
    print(a)
    

    输出:
    [ 10. 100. 1000. 10000.]

    4、numpy.geomspace

    创建一个一维等比数列。

    numpy.geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0)

    参数 描述
    start 序列的起始值
    stop 序列的终止值,如果 endpoint 为 True,该值包含于数列中
    num 要生成的样本数量,默认为 50
    endpoint 该值为 Ture 时,数列中中包含 stop 值,反之不包含,默认是 True。
    dtype ndarray 的数据类型
    axis 1.16.0 版本中的新功能 ,没看懂怎么用,官网上连个例子都没有,值为 0 和 -1 的时候结果相同,其他时候都报错。

    示例:

    import numpy as np
    
    a = np.geomspace(1, 8, num=4)
    print(a)
    

    输出:

    [1. 2. 4. 8.]

    NumPy 从已有的数组创建数组

    1、numpy.asarray

    numpy.asarray 类似 numpy.array,但 numpy.asarray 的参数只有三个。

    numpy.asarray(a, dtype=None, order=None)

    参数 描述
    a 输入数据,可以转换为数组的任何形式。 这包括列表,元组列表,元组,元组元组,列表元组和 ndarray。
    dtype 数据类型
    order 在计算机内存中的存储元素的顺序,只支持 'C'(按行)、'F'(按列),默认 'C'

    示例:

    import numpy as np
    
    a = np.asarray([1, 2, 3])
    print(a)
    

    输出:

    [1 2 3]

    2、numpy.frombuffer

    numpy.frombuffer 用于实现动态数组。numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。

    numpy.frombuffer(buffer, dtype=float, count=-1, offset=0)

    参数 描述
    buffer 实现了 __buffer__方法的对象,(绝对不是菜鸟教程上说的任意对象都可以)
    dtype 返回数组的数据类型
    count 读取的数据数量,默认为 -1,读取所有数据。
    offset 读取的起始位置,默认为 0。

    例一:

    buffer 是字符串的时候,Python3 默认 str 是 Unicode 类型,所以要转成 bytestring 在原 str 前加上 b。

    import numpy as np
    
    a = np.frombuffer(b'Hello World', dtype='S1')
    print(a)
    

    输出:

    [b'H' b'e' b'l' b'l' b'o' b' ' b'W' b'o' b'r' b'l' b'd']

    例二:

    看了上面的例子,似乎对“实现动态数组”没啥感觉,那么我们来看这个例子。

    import numpy as np
    import array
    
    a = array.array('i', [1, 2, 3, 4])
    print(a)
    
    na = np.frombuffer(a, dtype=np.int_)
    print(na)
    
    a[0] = 10
    print(a)
    print(na)
    

    输出:

    array('i', [1, 2, 3, 4])
    [1 2 3 4]
    array('i', [10, 2, 3, 4])
    [10  2  3  4]
    

    array.array 创建的数组对象内存是连续的(这里不能用 list,会报:AttributeError: 'list' object has no attribute 'buffer'),numpy.frombufferarray.array 的内存中创建数组,从上例中可以看出,改变 array.array 的值,numpy.frombuffer 的值也会跟着改变,由此可见。

    例三:

    array.array 数组中的值改变是可以的,但是如果是添加值,那就不行了。

    import numpy as np
    import array
    
    a = array.array("i", [1, 2, 3, 4])
    na = np.frombuffer(a, dtype=int)
    print(na)
    
    a.append(5)
    print(na)
    

    输出:

    [1 2 3 4]
    [140896288       381         3         4]
    

    3、numpy.fromiter

    numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组。

    numpy.fromiter(iterable, dtype, count=-1)

    参数 描述
    iterable 可迭代对象
    dtype 返回数组的数据类型
    count 读取的数据数量,默认为 -1,读取所有数据

    例一:

    import numpy as np
    
    iterable = (x * x for x in range(5))
    a = np.fromiter(iterable, int)
    print(a)
    

    输出:

    [ 0 1 4 9 16]

    看起来有点像 numpy.array,array 方法需要传入的是一个 list,而 fromiter 可以传入可迭代对象。

    例二:

    将上例换成 array 试试看。

    import numpy as np
    
    iterable = (x * x for x in range(5))
    a = np.array(iterable)
    print(a)
    

    输出:

    <generator object <genexpr> at 0x000000001442DD00>

    4、empty_like

    返回一个与给定数组具有相同维度和类型的未初始化的新数组。

    numpy.empty_like(prototype, dtype=None, order='K', subok=True)

    参数 描述
    prototype 给定的数组
    dtype 覆盖结果的数据类型,版本1.6.0中的新功能。
    order 指定阵列的内存布局。C(按行)、F(按列)、A(原顺序)、K(元素在内存中的出现顺序)
    subok 默认情况下,返回的数组被强制为基类数组。 如果为 True,则返回子类。

    示例:

    import numpy as np
    a = np.empty_like([[1, 2, 3], [4, 5, 6]])
    print(a)
    

    输出:*

    [[870   0   0]
     [  0   0   0]]
    

    5、zeros_like

    numpy.zeros_like(a, dtype=None, order='K', subok=True)

    参数同上。

    示例:

    import numpy as np
    a = np.zeros_like([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
    print(a)
    

    输出:*

    [[0. 0. 0.]
     [0. 0. 0.]]
    

    6、ones_like

    numpy.ones_like(a, dtype=None, order='K', subok=True)
    参数同上。

    示例:

    import numpy as np
    a = np.ones_like([[1, 2, 3], [4, 5, 6]])
    print(a)
    

    输出:*

    [[1 1 1]
     [1 1 1]]
    

    7、numpy.full_like

    返回与给定数组具有相同维度和类型的并以 fill_value 填充的数组。

    numpy.full_like(a, fill_value, dtype=None, order='K', subok=True)

    参数 描述
    a 给定的数组
    fill_value 填充值
    dtype 返回数组的数据类型,默认值 None,则使用给定数组的类型
    order 指定阵列的内存布局。C(按行)、F(按列)、A(原顺序)、K(元素在内存中的出现顺序)
    subok 默认情况下,返回的数组被强制为基类数组。 如果为 True,则返回子类。

    zeros_like、ones_like 其实都是此方法的特例。

    示例:

    import numpy as np
    
    x = np.arange(6, dtype=int)
    print(x)
    print('-------------------')
    a = np.full_like(x, 1)
    b = np.full_like(x, 0.1)
    c = np.full_like(x, 0.1, dtype=np.double)
    
    print(a)
    print(b)
    print(c)
    

    输出:

    [0 1 2 3 4 5]
    -------------------
    [1 1 1 1 1 1]
    [0 0 0 0 0 0]
    [0.1 0.1 0.1 0.1 0.1 0.1]
    

    小编整理的一整套系统的Py thon学习教程从最基础的到框架再到项目实战的学习资料都有整理,送给每一位小伙伴, 有想学Py thon编程的,或是转行,或是大学生,还有工作中想提升自己能力的,正在学习的小伙伴欢迎加入学习。点击加入企鹅群

    ---原文地址---

    相关文章

      网友评论

        本文标题:NumPy 超详细教程(1):NumPy 数组

        本文链接:https://www.haomeiwen.com/subject/ofbbbqtx.html