在上一篇文章中,如果方法在cache中没有查找到imp,那么就会来到_lookUpImpOrForward
。全局搜索“_lookUpImpOrForward”并没有找到相关实现。而实际上_lookUpImpOrForward
是由C++实现的,因为汇编中调用C++的方法需要在方法名前多加一个下划线,所以全局查找lookUpImpOrForward,便可以在objc-runtime-new.mm
的6094~6203行找到定义。
要查找汇编中调用的C++方法,需要去掉方法前的一个下划线,而如果需要查找在C++中调用的汇编代码,需要在方法前添加一个下划线
本文便是通过对lookUpImpOrForward
方法进行探究来看OC底层是如果慢速查找的。
lookUpImpOrForward初探
首先对lookUpImpOrForward
的实现进行解析。
IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
// 定义相关变量
const IMP forward_imp = (IMP)_objc_msgForward_impcache;
IMP imp = nil;
Class curClass;
runtimeLock.assertUnlocked();
// Optimistic cache lookup
// 尝试通过cache快速查找到imp
// 之所以再次在缓存中查找是考虑到有可能其他线程调用了这个方法,导致此时缓存已经有这个方法
if (fastpath(behavior & LOOKUP_CACHE)) {
imp = cache_getImp(cls, sel);
if (imp) goto done_nolock;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
// 加锁,线程安全
runtimeLock.lock();
// We don't want people to be able to craft a binary blob that looks like
// a class but really isn't one and do a CFI attack.
//
// To make these harder we want to make sure this is a class that was
// either built into the binary or legitimately registered through
// objc_duplicateClass, objc_initializeClassPair or objc_allocateClassPair.
//
// TODO: this check is quite costly during process startup.
// 判断是否已知类,如果不是内部会做一系列操作
checkIsKnownClass(cls);
// 判断类是否已经实现
if (slowpath(!cls->isRealized())) {
// 如果没有实现会在这里进行实现,内部会确定类的继承链
cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
// runtimeLock may have been dropped but is now locked again
}
// 判断类是否初始化
if (slowpath((behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())) {
// 如果没有,对类进行初始化
cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
// runtimeLock may have been dropped but is now locked again
// If sel == initialize, class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
runtimeLock.assertLocked();
curClass = cls;
// The code used to lookpu the class's cache again right after
// we take the lock but for the vast majority of the cases
// evidence shows this is a miss most of the time, hence a time loss.
//
// The only codepath calling into this without having performed some
// kind of cache lookup is class_getInstanceMethod().
// 死循环,在继承链中查找方法
for (unsigned attempts = unreasonableClassCount();;) {
// curClass method list.
// 在类方法列表中查找方法实现
// 第一次进来为当前类,之后进来的为父类
Method meth = getMethodNoSuper_nolock(curClass, sel);
// 如果查找到匹配的,goto done执行返回
if (meth) {
imp = meth->imp;
goto done;
}
// 如果当前类方法列表中没有找到,来到下面的流程
// 将curClass设为父类,判断是否为空
// 为空则结束循环
if (slowpath((curClass = curClass->superclass) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
// 如果当前父类为nil,说明当前类为根类
// 设置imp为_objc_msgForward_impcache,结束循环
imp = forward_imp;
break;
}
// Halt if there is a cycle in the superclass chain.
// 每循环一次,attempts-1
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
// 在父类中的缓存中查找方法,不会在父类的方法列表中查找
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
// 如果父类中找到方法,goto done,结束循环
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
}
// No implementation found. Try method resolver once.
// 如果父类中都没有找方法,去到动态方法决议
// behavior & LOOKUP_RESOLVER是为了判断这个流程来过一次动态方法决议
// 动态方法决议只来一次
if (slowpath(behavior & LOOKUP_RESOLVER)) {
// behavior ^= LOOKUP_RESOLVER后behavior & LOOKUP_RESOLVER便为false,保证这里只来一次
behavior ^= LOOKUP_RESOLVER;
// 去到动态方法决议
return resolveMethod_locked(inst, sel, cls, behavior);
}
// 这里是方法找到的流程
done:
//打印log并将方法缓存在cache中,方便下次调用可以通过快速查找找到
log_and_fill_cache(cls, imp, sel, inst, curClass);
// 开锁
runtimeLock.unlock();
// 这里重新在缓存中找到的流程,此时没有加锁
done_nolock:
if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
return nil;
}
return imp;
}
可以看到lookUpImpOrForward
有以下步骤
**1. 先在cache中再查找一次,避免出现多线程调用cache此时添加了方法的情况
- 查看当前类是否已经为已知类、是否实现、是否初始化,如果没有会对类进行一些处理
- 开启一个循环,在当前类的方法列表中查找方法
- 如果找到将方法缓存在cache中,返回imp
- 没有在当前类中没有找到,会通过superclass指针找到父类
- 首先会在父类的缓存中查找,如果父类中没有,那么在下次循环中再来到父类的方法列表中查找,重复4、5的流程,直到找到根类为止
- 父类中查找也会经过快速查找->慢速查找的过程,也就是汇编再到C++的过程,如果父类中找到了方法,方法
- 如果一直到根类都没有找到该方法,那么就会来到动态方法决议,动态方法决议只走一次**
getMethodNoSuper_nolock方法查找过程
查看getMethodNoSuper_nolock
的实现
static method_t *
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
// fixme nil cls?
// fixme nil sel?
auto const methods = cls->data()->methods();
for (auto mlists = methods.beginLists(),
end = methods.endLists();
mlists != end;
++mlists)
{
// <rdar://problem/46904873> getMethodNoSuper_nolock is the hottest
// caller of search_method_list, inlining it turns
// getMethodNoSuper_nolock into a frame-less function and eliminates
// any store from this codepath.
method_t *m = search_method_list_inline(*mlists, sel);
if (m) return m;
}
return nil;
}
跟进search_method_list_inline
ALWAYS_INLINE static method_t *
search_method_list_inline(const method_list_t *mlist, SEL sel)
{
int methodListIsFixedUp = mlist->isFixedUp();
int methodListHasExpectedSize = mlist->entsize() == sizeof(method_t);
if (fastpath(methodListIsFixedUp && methodListHasExpectedSize)) {
return findMethodInSortedMethodList(sel, mlist);
} else {
// Linear search of unsorted method list
for (auto& meth : *mlist) {
if (meth.name == sel) return &meth;
}
}
#if DEBUG
// sanity-check negative results
if (mlist->isFixedUp()) {
for (auto& meth : *mlist) {
if (meth.name == sel) {
_objc_fatal("linear search worked when binary search did not");
}
}
}
#endif
return nil;
}
可以看到,如果方法列表是已经排列好的,会执行findMethodInSortedMethodList
方法,如果是未经过排序,那么会通过一般遍历查找。
查看findMethodInSortedMethodList
,可以明显看到这是一个二分查找的过程
ALWAYS_INLINE static method_t *
findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
ASSERT(list);
// 拿到方法列表首元素
const method_t * const first = &list->first;
const method_t *base = first;
// 二分查找的较小值
const method_t *probe;
// 目标值
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
// 循环查找
// 首先从第一个元素开始
// 每次减少一半(>>1,逻辑右移,相当于/2,比如,5,二进制0x0101,右移为0b0010, 结果为2)
for (count = list->count; count != 0; count >>= 1) {
// base+count的一半,probe是较小值base和较大值的中间值
probe = base + (count >> 1);
// 到probe的sel
uintptr_t probeValue = (uintptr_t)probe->name;
// 比较当前中间的方法sel与目标sel是否一致
if (keyValue == probeValue) {
// `probe` is a match.
// Rewind looking for the *first* occurrence of this value.
// This is required for correct category overrides.
// 能进来这里说明方法已经找到
// 往前遍历查看是否还有同名方法,因为分类也可以给类添加同名方法,找到最前面的类返回
while (probe > first && keyValue == (uintptr_t)probe[-1].name) {
probe--;
}
return (method_t *)probe;
}
// 如果目标的sel大于中间的sel,说明方法在probe的右边,所以将较小值base移至probe+1的位置,因为base往前了一个单位,所以count-1,下次循环是>>1才会定位到中间位置
// 如果目标sel小于,下次的较小值仍然为原来的值,count在下次循环是会变为原来的1/2,所以probe下次循环时会加上上次循环时count的1/4,从而定位到中间的位置
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
也就是
**1. 如果方法列表没有经过排序,会通过一般遍历查找方法
- 如果方法列表已经排序过了,会通过二分法查找方法**
总结
大致流程可以用下图概括:
慢速查找.png
网友评论