美文网首页
博客 城市访问量统计并且通过Echarts + 百度地图 展示

博客 城市访问量统计并且通过Echarts + 百度地图 展示

作者: Aska小强 | 来源:发表于2020-08-17 11:34 被阅读0次

博客 城市访问量统计并且通过Echarts展示

本篇讲解一下 如何 通过QQWry 解析IP 统计每个城市的访问量 并且 在Vue 中使用 Echarts + 百度地图 展示 博客访问量。

效果图如下:

image-20200817111337208

1.纯真Ip地址库 QQWry

这是我在github上找的 java版本的 解析 qqwry的

1.1 maven 引入 qqwry

        <!--        qqwary 是一个 ip 数据库-->

        <dependency>
            <groupId>com.github.jarod</groupId>
            <artifactId>qqwry-java</artifactId>
            <version>0.7.0</version>
        </dependency>

引入后可以看到 该jar 包其实内部已经引入了 qqwry.dat 库了

image-20200817101056841

使用教程:

QQWry qqwry = new QQWry(); // load qqwry.dat from classpath

QQWry qqwry = new QQWry(Paths.get("path/to/qqwry.dat")); // load qqwry.dat from java.nio.file.Path

byte[] data = Files.readAllBytes(Paths.get("path/to/qqwry.dat"));
QQWry qqwry = new QQWry(data); // create QQWry with provided data

String myIP = "127.0.0.1";
IPZone ipzone = qqwry.findIP(myIP);
System.out.printf("%s, %s", ipzone.getMainInfo(), ipzone.getSubInfo()); // 江苏省无锡市, 电信
// IANA, 保留地址用于本地回送

1.2 QQWryUtils

用于提供 一个静态的 QQWry 加载 qqwry.dat ,并且提供根据ip 获取 IpZone

public class QQWryUtils {

    private static QQWry qqWry;

    static {
        try {
            qqWry = new QQWry();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static IPZone getIpZoneByIp(String ip) {
        return qqWry.findIP(ip);
    }
}

2.提供拦截器解析Ip并放入队列

给SpringMVC 提供一个拦截器,在拦截器中 用于获取当前的请求ip 并且通过 QQWryUtils 解析该ip ,封装成IpAccessInfo 对象 存入 linkedBlockingQueue 队列中去,这里只是简单处理下

@Slf4j
public class AccessRecordInterceptor extends HandlerInterceptorAdapter {

    /**
     * 目前是 解析 ip 并且生成 IpAccessInfo 放入 linkedBlockingQueue 队列中去
     *
     * @param request
     * @param response
     * @param handler
     * @return
     * @throws Exception
     */
    @Override
    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
        String ip = IpUtil.getIpAddress(request);
        log.info("【请求者 ip : {} 】", ip);
        IPZone ipZone = QQWryUtils.getIpZoneByIp(ip);
        log.info("【解析到 城市: {}】", ipZone.getMainInfo());

        IpAccessInfo ipAccessInfo = new IpAccessInfo();
        ipAccessInfo.setCity(ipZone.getMainInfo());
        ipAccessInfo.setIp(ip);
        ipAccessInfo.setOperators(ipZone.getSubInfo());
        try {
            IpQueue.linkedBlockingQueue.add(ipAccessInfo); //这里使用 add方法 当添队列满的时候 直接捕获异常
        } catch (IllegalStateException e) {
            log.warn("队列已满 ");
        }
        return true;
    }
}

IpAccessInfo 我这里入库ip 信息

@Data
@Entity
@EntityListeners(AuditingEntityListener.class)
public class IpAccessInfo {

    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private String ip;

    private String city;
    /**
     * 运营商
     */
    private String operators;

}

3.提供线程消费队列,并且根据城市记录访问量

这里提供 线程消费 队列 并且使用redis的自增 记录每个城市的访问量,并且使用SpringBoot的 CommandLineRunner 接口,在项目启动的时候 加载初始数据

/**
 * @author johnny
 * @create 2020-08-15 下午1:56
 **/
@Component
@Order(value = 1)
@Slf4j
public class IpQueue implements CommandLineRunner {


    public static final LinkedBlockingQueue<IpAccessInfo> linkedBlockingQueue = new LinkedBlockingQueue(10000);

    @Autowired
    private ThreadPoolTaskExecutor threadPoolTaskExecutor;

    @Autowired
    private IpAccessInfoRepository ipAccessInfoRepository;

    @Autowired
    private IpAccessCountRepository ipAccessCountRepository;

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Override
    public void run(String... args) throws Exception {
      //SpringBoot CommandLineRunner 接口启动后 该方法会被调用, 进行初始化数据,并且启动线程监听队列
        ipAccessCountRepository.findAll().forEach(ipAccessCount -> {
            if (!redisTemplate.hasKey(ipAccessCount.getCity())) {
                redisTemplate.opsForValue().set(ipAccessCount.getCity(), String.valueOf(ipAccessCount.getCount()));
            } else {
                log.info("【Redis 存在: {} 】", ipAccessCount.getCity());
            }
        });
        log.info("【服务启动  --------------  监听 队列 IpQueue 】");
        IpAccessThread ipAccessThread = new IpAccessThread(linkedBlockingQueue, ipAccessInfoRepository, redisTemplate);
        threadPoolTaskExecutor.submit(ipAccessThread); //使用线程池 提交任务
    }

    static class IpAccessThread implements Runnable {

        private LinkedBlockingQueue<IpAccessInfo> linkedBlockingQueue;

        private IpAccessInfoRepository ipAccessInfoRepository;

        private RedisTemplate redisTemplate;

        public IpAccessThread(LinkedBlockingQueue<IpAccessInfo> linkedBlockingQueue, IpAccessInfoRepository ipAccessInfoRepository, RedisTemplate redisTemplate) {
            this.linkedBlockingQueue = linkedBlockingQueue;
            this.ipAccessInfoRepository = ipAccessInfoRepository;
            this.redisTemplate = redisTemplate;
        }

        @Override
        public void run() {
            while (true) {
                try {
                    System.out.println("开始获取 : ");
                    IpAccessInfo accessInfo = linkedBlockingQueue.take();
                    System.out.println("监听到 : " + accessInfo);
                    //江苏省无锡市
                    if (accessInfo.getCity().contains("省") && accessInfo.getCity().contains("市")) {
                        String city = accessInfo.getCity();
                        city = city.substring(city.indexOf("省") + 1, city.indexOf("市"));
                        if (redisTemplate.hasKey(city)) {
                            redisTemplate.opsForValue().increment(city); //根据城市 key 进行自增
                        }
                    } else {
                        log.error("【异常 地理位置 {} 】", accessInfo.getCity());
                    }
                    ipAccessInfoRepository.save(accessInfo);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
}

4. Echarts + 百度地图

由于本博客前端是用Vue 编写的,所以下面的引入就是在Vue下引入的方式

4.1 在public/index.html中添加以下代码

ak密钥: 就是百度地图AK密钥,需要自己去百度地图申请,或者网上找可用的ak

53oVIOgmSIejwV7EfphPgTynOZbIiVYu 网上找的可用的密钥

<script type="text/javascript" src="http://api.map.baidu.com/api?v=2.0&ak=你的密钥"></script>

4.2 在vue.config.js中添加配置

主要是 externals 部分

module.exports = {
publicPath: './',
outputDir: 'dist',
assetsDir: 'static',
indexPath: 'index.html',
productionSourceMap: false,
  configureWebpack: {
    // provide the app's title in webpack's name field, so that
    // it can be accessed in index.html to inject the correct title.
    name: name,
    resolve: {
      alias: {
        '@': resolve('src')
      }
    },
    externals: {
        'BMap': 'BMap',
        'BMap_Symbol_SHAPE_POINT':'BMap_Symbol_SHAPE_POINT'
    }
  },
}

4.3 最后在vue main.js 文件中引入

import BMap from 'BMap
require('echarts/extension/bmap/bmap')

4.4 编写展示Echarts+百度地图的组件

可以参考echarts 网站https://echarts.apache.org/zh/index.html

需要注意 我这里是从后台拿的数据 ,是通过上面拦截器解析ip 后 记录每个城市对应的访问量存入 redis中的。

注意如果需要扩展其他城市,可以找到城市的经纬度,然后扩展 geoCoordMap 就行了。。

<template>
  <div>
    <div id="myChart" style="width:100%;height: 1050px"></div>
  </div>
</template>

<script>
import { ipAccess } from "@/api/charts/ip_access_api";
export default {
  name: "IpContent",
  components: {},
  data() {
    return {
      chartData: [
        { name: "海门", value: 9 },
        { name: "鄂尔多斯", value: 12 },
        { name: "招远", value: 12 },
        { name: "舟山", value: 12 },
        { name: "齐齐哈尔", value: 14 },
        { name: "盐城", value: 15 },
        { name: "赤峰", value: 16 },
        { name: "青岛", value: 18 },
        { name: "乳山", value: 18 },
        { name: "金昌", value: 19 },
        { name: "泉州", value: 21 },
        { name: "莱西", value: 21 },
        { name: "日照", value: 21 },
        { name: "胶南", value: 22 },
        { name: "南通", value: 23 },
        { name: "拉萨", value: 24 },
        { name: "云浮", value: 24 },
        { name: "梅州", value: 25 },
        { name: "文登", value: 25 },
        { name: "上海", value: 25 },
        { name: "攀枝花", value: 25 },
        { name: "威海", value: 25 },
        { name: "承德", value: 25 },
        { name: "厦门", value: 26 },
        { name: "汕尾", value: 26 },
        { name: "潮州", value: 26 },
        { name: "丹东", value: 27 },
        { name: "太仓", value: 27 },
        { name: "曲靖", value: 27 },
        { name: "烟台", value: 28 },
        { name: "福州", value: 29 },
        { name: "瓦房店", value: 30 },
        { name: "即墨", value: 30 },
        { name: "抚顺", value: 31 },
        { name: "玉溪", value: 31 },
        { name: "张家口", value: 31 },
        { name: "阳泉", value: 31 },
        { name: "莱州", value: 32 },
        { name: "湖州", value: 32 },
        { name: "汕头", value: 32 },
        { name: "昆山", value: 33 },
        { name: "宁波", value: 33 },
        { name: "湛江", value: 33 },
        { name: "揭阳", value: 34 },
        { name: "荣成", value: 34 },
        { name: "连云港", value: 35 },
        { name: "葫芦岛", value: 35 },
        { name: "常熟", value: 36 },
        { name: "东莞", value: 36 },
        { name: "河源", value: 36 },
        { name: "淮安", value: 36 },
        { name: "泰州", value: 36 },
        { name: "南宁", value: 37 },
        { name: "营口", value: 37 },
        { name: "惠州", value: 37 },
        { name: "江阴", value: 37 },
        { name: "蓬莱", value: 37 },
        { name: "韶关", value: 38 },
        { name: "嘉峪关", value: 38 },
        { name: "广州", value: 38 },
        { name: "延安", value: 38 },
        { name: "太原", value: 39 },
        { name: "清远", value: 39 },
        { name: "中山", value: 39 },
        { name: "昆明", value: 39 },
        { name: "寿光", value: 40 },
        { name: "盘锦", value: 40 },
        { name: "长治", value: 41 },
        { name: "深圳", value: 41 },
        { name: "珠海", value: 42 },
        { name: "宿迁", value: 43 },
        { name: "咸阳", value: 43 },
        { name: "铜川", value: 44 },
        { name: "平度", value: 44 },
        { name: "佛山", value: 44 },
        { name: "海口", value: 44 },
        { name: "江门", value: 45 },
        { name: "章丘", value: 45 },
        { name: "肇庆", value: 46 },
        { name: "大连", value: 47 },
        { name: "临汾", value: 47 },
        { name: "吴江", value: 47 },
        { name: "石嘴山", value: 49 },
        { name: "沈阳", value: 50 },
        { name: "苏州", value: 50 },
        { name: "茂名", value: 50 },
        { name: "嘉兴", value: 51 },
        { name: "长春", value: 51 },
        { name: "胶州", value: 52 },
        { name: "银川", value: 52 },
        { name: "张家港", value: 52 },
        { name: "三门峡", value: 53 },
        { name: "锦州", value: 54 },
        { name: "南昌", value: 54 },
        { name: "柳州", value: 54 },
        { name: "三亚", value: 54 },
        { name: "自贡", value: 56 },
        { name: "吉林", value: 56 },
        { name: "阳江", value: 57 },
        { name: "泸州", value: 57 },
        { name: "西宁", value: 57 },
        { name: "宜宾", value: 58 },
        { name: "呼和浩特", value: 58 },
        { name: "成都", value: 58 },
        { name: "大同", value: 58 },
        { name: "镇江", value: 59 },
        { name: "桂林", value: 59 },
        { name: "张家界", value: 59 },
        { name: "宜兴", value: 59 },
        { name: "北海", value: 60 },
        { name: "西安", value: 61 },
        { name: "金坛", value: 62 },
        { name: "东营", value: 62 },
        { name: "牡丹江", value: 63 },
        { name: "遵义", value: 63 },
        { name: "绍兴", value: 63 },
        { name: "扬州", value: 64 },
        { name: "常州", value: 64 },
        { name: "潍坊", value: 65 },
        { name: "重庆", value: 66 },
        { name: "台州", value: 67 },
        { name: "南京", value: 67 },
        { name: "滨州", value: 70 },
        { name: "贵阳", value: 71 },
        { name: "无锡", value: 71 },
        { name: "本溪", value: 71 },
        { name: "克拉玛依", value: 72 },
        { name: "渭南", value: 72 },
        { name: "马鞍山", value: 72 },
        { name: "宝鸡", value: 72 },
        { name: "焦作", value: 75 },
        { name: "句容", value: 75 },
        { name: "北京", value: 79 },
        { name: "徐州", value: 79 },
        { name: "衡水", value: 80 },
        { name: "包头", value: 80 },
        { name: "绵阳", value: 80 },
        { name: "乌鲁木齐", value: 84 },
        { name: "枣庄", value: 84 },
        { name: "杭州", value: 84 },
        { name: "淄博", value: 85 },
        { name: "鞍山", value: 86 },
        { name: "溧阳", value: 86 },
        { name: "库尔勒", value: 86 },
        { name: "安阳", value: 90 },
        { name: "开封", value: 90 },
        { name: "济南", value: 92 },
        { name: "德阳", value: 93 },
        { name: "温州", value: 95 },
        { name: "九江", value: 96 },
        { name: "邯郸", value: 98 },
        { name: "临安", value: 99 },
        { name: "兰州", value: 99 },
        { name: "沧州", value: 100 },
        { name: "临沂", value: 103 },
        { name: "南充", value: 104 },
        { name: "天津", value: 105 },
        { name: "富阳", value: 106 },
        { name: "泰安", value: 112 },
        { name: "诸暨", value: 112 },
        { name: "郑州", value: 113 },
        { name: "哈尔滨", value: 114 },
        { name: "聊城", value: 116 },
        { name: "芜湖", value: 117 },
        { name: "唐山", value: 119 },
        { name: "平顶山", value: 119 },
        { name: "邢台", value: 119 },
        { name: "德州", value: 120 },
        { name: "济宁", value: 120 },
        { name: "荆州", value: 127 },
        { name: "宜昌", value: 130 },
        { name: "义乌", value: 132 },
        { name: "丽水", value: 133 },
        { name: "洛阳", value: 134 },
        { name: "秦皇岛", value: 136 },
        { name: "株洲", value: 143 },
        { name: "石家庄", value: 147 },
        { name: "莱芜", value: 148 },
        { name: "常德", value: 152 },
        { name: "保定", value: 153 },
        { name: "湘潭", value: 154 },
        { name: "金华", value: 157 },
        { name: "岳阳", value: 169 },
        { name: "长沙", value: 175 },
        { name: "衢州", value: 177 },
        { name: "廊坊", value: 193 },
        { name: "菏泽", value: 1941 },
        { name: "合肥", value: 2291 },
        { name: "武汉", value: 2731 },
        { name: "大庆", value: 2791 },
      ],

      geoCoordMap: {
        海门: [121.15, 31.89],
        鄂尔多斯: [109.781327, 39.608266],
        招远: [120.38, 37.35],
        舟山: [122.207216, 29.985295],
        齐齐哈尔: [123.97, 47.33],
        盐城: [120.13, 33.38],
        赤峰: [118.87, 42.28],
        青岛: [120.33, 36.07],
        乳山: [121.52, 36.89],
        金昌: [102.188043, 38.520089],
        泉州: [118.58, 24.93],
        莱西: [120.53, 36.86],
        日照: [119.46, 35.42],
        胶南: [119.97, 35.88],
        南通: [121.05, 32.08],
        拉萨: [91.11, 29.97],
        云浮: [112.02, 22.93],
        梅州: [116.1, 24.55],
        文登: [122.05, 37.2],
        上海: [121.48, 31.22],
        攀枝花: [101.718637, 26.582347],
        威海: [122.1, 37.5],
        承德: [117.93, 40.97],
        厦门: [118.1, 24.46],
        汕尾: [115.375279, 22.786211],
        潮州: [116.63, 23.68],
        丹东: [124.37, 40.13],
        太仓: [121.1, 31.45],
        曲靖: [103.79, 25.51],
        烟台: [121.39, 37.52],
        福州: [119.3, 26.08],
        瓦房店: [121.979603, 39.627114],
        即墨: [120.45, 36.38],
        抚顺: [123.97, 41.97],
        玉溪: [102.52, 24.35],
        张家口: [114.87, 40.82],
        阳泉: [113.57, 37.85],
        莱州: [119.942327, 37.177017],
        湖州: [120.1, 30.86],
        汕头: [116.69, 23.39],
        昆山: [120.95, 31.39],
        宁波: [121.56, 29.86],
        湛江: [110.359377, 21.270708],
        揭阳: [116.35, 23.55],
        荣成: [122.41, 37.16],
        连云港: [119.16, 34.59],
        葫芦岛: [120.836932, 40.711052],
        常熟: [120.74, 31.64],
        东莞: [113.75, 23.04],
        河源: [114.68, 23.73],
        淮安: [119.15, 33.5],
        泰州: [119.9, 32.49],
        南宁: [108.33, 22.84],
        营口: [122.18, 40.65],
        惠州: [114.4, 23.09],
        江阴: [120.26, 31.91],
        蓬莱: [120.75, 37.8],
        韶关: [113.62, 24.84],
        嘉峪关: [98.289152, 39.77313],
        广州: [113.23, 23.16],
        延安: [109.47, 36.6],
        太原: [112.53, 37.87],
        清远: [113.01, 23.7],
        中山: [113.38, 22.52],
        昆明: [102.73, 25.04],
        寿光: [118.73, 36.86],
        盘锦: [122.070714, 41.119997],
        长治: [113.08, 36.18],
        深圳: [114.07, 22.62],
        珠海: [113.52, 22.3],
        宿迁: [118.3, 33.96],
        咸阳: [108.72, 34.36],
        铜川: [109.11, 35.09],
        平度: [119.97, 36.77],
        佛山: [113.11, 23.05],
        海口: [110.35, 20.02],
        江门: [113.06, 22.61],
        章丘: [117.53, 36.72],
        肇庆: [112.44, 23.05],
        大连: [121.62, 38.92],
        临汾: [111.5, 36.08],
        吴江: [120.63, 31.16],
        石嘴山: [106.39, 39.04],
        沈阳: [123.38, 41.8],
        苏州: [120.62, 31.32],
        茂名: [110.88, 21.68],
        嘉兴: [120.76, 30.77],
        长春: [125.35, 43.88],
        胶州: [120.03336, 36.264622],
        银川: [106.27, 38.47],
        张家港: [120.555821, 31.875428],
        三门峡: [111.19, 34.76],
        锦州: [121.15, 41.13],
        南昌: [115.89, 28.68],
        柳州: [109.4, 24.33],
        三亚: [109.511909, 18.252847],
        自贡: [104.778442, 29.33903],
        吉林: [126.57, 43.87],
        阳江: [111.95, 21.85],
        泸州: [105.39, 28.91],
        西宁: [101.74, 36.56],
        宜宾: [104.56, 29.77],
        呼和浩特: [111.65, 40.82],
        成都: [104.06, 30.67],
        大同: [113.3, 40.12],
        镇江: [119.44, 32.2],
        桂林: [110.28, 25.29],
        张家界: [110.479191, 29.117096],
        宜兴: [119.82, 31.36],
        北海: [109.12, 21.49],
        西安: [108.95, 34.27],
        金坛: [119.56, 31.74],
        东营: [118.49, 37.46],
        牡丹江: [129.58, 44.6],
        遵义: [106.9, 27.7],
        绍兴: [120.58, 30.01],
        扬州: [119.42, 32.39],
        常州: [119.95, 31.79],
        潍坊: [119.1, 36.62],
        重庆: [106.54, 29.59],
        台州: [121.420757, 28.656386],
        南京: [118.78, 32.04],
        滨州: [118.03, 37.36],
        贵阳: [106.71, 26.57],
        无锡: [120.29, 31.59],
        本溪: [123.73, 41.3],
        克拉玛依: [84.77, 45.59],
        渭南: [109.5, 34.52],
        马鞍山: [118.48, 31.56],
        宝鸡: [107.15, 34.38],
        焦作: [113.21, 35.24],
        句容: [119.16, 31.95],
        北京: [116.46, 39.92],
        徐州: [117.2, 34.26],
        衡水: [115.72, 37.72],
        包头: [110, 40.58],
        绵阳: [104.73, 31.48],
        乌鲁木齐: [87.68, 43.77],
        枣庄: [117.57, 34.86],
        杭州: [120.19, 30.26],
        淄博: [118.05, 36.78],
        鞍山: [122.85, 41.12],
        溧阳: [119.48, 31.43],
        库尔勒: [86.06, 41.68],
        安阳: [114.35, 36.1],
        开封: [114.35, 34.79],
        济南: [117, 36.65],
        德阳: [104.37, 31.13],
        温州: [120.65, 28.01],
        九江: [115.97, 29.71],
        邯郸: [114.47, 36.6],
        临安: [119.72, 30.23],
        兰州: [103.73, 36.03],
        沧州: [116.83, 38.33],
        临沂: [118.35, 35.05],
        南充: [106.110698, 30.837793],
        天津: [117.2, 39.13],
        富阳: [119.95, 30.07],
        泰安: [117.13, 36.18],
        诸暨: [120.23, 29.71],
        郑州: [113.65, 34.76],
        哈尔滨: [126.63, 45.75],
        聊城: [115.97, 36.45],
        芜湖: [118.38, 31.33],
        唐山: [118.02, 39.63],
        平顶山: [113.29, 33.75],
        邢台: [114.48, 37.05],
        德州: [116.29, 37.45],
        济宁: [116.59, 35.38],
        荆州: [112.239741, 30.335165],
        宜昌: [111.3, 30.7],
        义乌: [120.06, 29.32],
        丽水: [119.92, 28.45],
        洛阳: [112.44, 34.7],
        秦皇岛: [119.57, 39.95],
        株洲: [113.16, 27.83],
        石家庄: [114.48, 38.03],
        莱芜: [117.67, 36.19],
        常德: [111.69, 29.05],
        保定: [115.48, 38.85],
        湘潭: [112.91, 27.87],
        金华: [119.64, 29.12],
        岳阳: [113.09, 29.37],
        长沙: [113, 28.21],
        衢州: [118.88, 28.97],
        廊坊: [116.7, 39.53],
        菏泽: [115.480656, 35.23375],
        合肥: [117.27, 31.86],
        武汉: [114.31, 30.52],
        大庆: [125.03, 46.58],
      },
    };
  },
  methods: {
    drawLine() {
      var data = this.chartData;
      var geoCoordMap = this.geoCoordMap;
      // 基于准备好的dom,初始化echarts实例
      let myChart = this.$echarts.init(document.getElementById("myChart"));
      var convertData = function (data) {
        var res = [];
        for (var i = 0; i < data.length; i++) {
          var geoCoord = geoCoordMap[data[i].name];
          if (geoCoord) {
            res.push({
              name: data[i].name,
              value: geoCoord.concat(data[i].value),
            });
          }
        }
        return res;
      };

      function renderItem(params, api) {
        var coords = [
          // [116.7,39.53],
          // [103.73,36.03],
          // [112.91,27.87],
          // [120.65,28.01],
          // [119.57,39.95]
        ];
        var points = [];
        for (var i = 0; i < coords.length; i++) {
          points.push(api.coord(coords[i]));
        }
        var color = api.visual("color");

        return {
          //   type: "polygon",
          //   shape: {
          //     points: myChart.graphic.clipPointsByRect(points, {
          //       x: params.coordSys.x,
          //       y: params.coordSys.y,
          //       width: params.coordSys.width,
          //       height: params.coordSys.height,
          //     }),
          //   },
          //   style: api.style({
          //     fill: color,
          //     stroke: myChart.color.lift(color),
          //   }),
        };
      }

      // 绘制图表
      myChart.setOption({
        backgroundColor: "transparent",
        title: {
          text: "全国主要城市访问量",
          subtext: "访问统计",
          sublink: "http://www.pm25.in",
          left: "center",
          textStyle: {
            color: "#fff",
          },
        },
        tooltip: {
          trigger: "item",
        },
        bmap: {
          center: [107.114129, 37.550339],
          zoom: 5,
          roam: true,
          mapStyle: {
            styleJson: [
              {
                featureType: "water",
                elementType: "all",
                stylers: {
                  color: "#044161",
                },
              },
              {
                featureType: "land",
                elementType: "all",
                stylers: {
                  color: "#004981",
                },
              },
              {
                featureType: "boundary",
                elementType: "geometry",
                stylers: {
                  color: "#064f85",
                },
              },
              {
                featureType: "railway",
                elementType: "all",
                stylers: {
                  visibility: "off",
                },
              },
              {
                featureType: "highway",
                elementType: "geometry",
                stylers: {
                  color: "#004981",
                },
              },
              {
                featureType: "highway",
                elementType: "geometry.fill",
                stylers: {
                  color: "#005b96",
                  lightness: 1,
                },
              },
              {
                featureType: "highway",
                elementType: "labels",
                stylers: {
                  visibility: "off",
                },
              },
              {
                featureType: "arterial",
                elementType: "geometry",
                stylers: {
                  color: "#004981",
                },
              },
              {
                featureType: "arterial",
                elementType: "geometry.fill",
                stylers: {
                  color: "#00508b",
                },
              },
              {
                featureType: "poi",
                elementType: "all",
                stylers: {
                  visibility: "off",
                },
              },
              {
                featureType: "green",
                elementType: "all",
                stylers: {
                  color: "#056197",
                  visibility: "off",
                },
              },
              {
                featureType: "subway",
                elementType: "all",
                stylers: {
                  visibility: "off",
                },
              },
              {
                featureType: "manmade",
                elementType: "all",
                stylers: {
                  visibility: "off",
                },
              },
              {
                featureType: "local",
                elementType: "all",
                stylers: {
                  visibility: "off",
                },
              },
              {
                featureType: "arterial",
                elementType: "labels",
                stylers: {
                  visibility: "off",
                },
              },
              {
                featureType: "boundary",
                elementType: "geometry.fill",
                stylers: {
                  color: "#029fd4",
                },
              },
              {
                featureType: "building",
                elementType: "all",
                stylers: {
                  color: "#1a5787",
                },
              },
              {
                featureType: "label",
                elementType: "all",
                stylers: {
                  visibility: "off",
                },
              },
            ],
          },
        },
        series: [
          {
            name: "访问统计",
            type: "scatter",
            coordinateSystem: "bmap",
            data: convertData(data),
            encode: {
              value: 2,
            },
            symbolSize: function (val) {
            //   var value = val[2];
            //   var l = 0;
            //   while (value >= 1) {
            //     value = value / 10;
            //     l++;
            //   }
            //   var j = Math.pow(10, l - 2);
            //   console.log(l);
            //   console.log(j);
              return val[2] / 100;
              //   return val[2];
            },
            label: {
              formatter: "{b}",
              position: "right",
            },
            itemStyle: {
              color: "#ddb926",
            },
            emphasis: {
              label: {
                show: true,
              },
            },
          },
          {
            name: "Top 5",
            type: "effectScatter",
            coordinateSystem: "bmap",
            data: convertData(
              data
                .sort(function (a, b) {
                  return b.value - a.value;
                })
                .slice(0, 6)
            ),
            encode: {
              value: 2,
            },
            symbolSize: function (val) {
              return val[2] / 100;
            },
            showEffectOn: "emphasis",
            rippleEffect: {
              brushType: "stroke",
            },
            hoverAnimation: true,
            label: {
              formatter: "{b}",
              position: "right",
              show: true,
            },
            itemStyle: {
              color: "#f4e925",
              shadowBlur: 10,
              shadowColor: "#333",
            },
            zlevel: 1,
          },
          {
            type: "custom",
            coordinateSystem: "bmap",
            // renderItem: renderItem,
            itemStyle: {
              opacity: 0.5,
            },
            animation: false,
            silent: true,
            data: [0],
            z: -10,
          },
        ],
      });
       
      //设置 echarts 缩放比例,让其无法缩放
      myChart.on("finished", () => {
        // 从echarts对象中获取bmap对象
        var bmap = myChart.getModel().getComponent("bmap").getBMap();
        console.log(20180925104046, bmap.getZoom());
        // 设置最小缩放值
        bmap.setMinZoom(5);
        // // 设置最大缩放值
        bmap.setMaxZoom(5);
        // 缩放结束后的事件
        bmap.addEventListener("zoomend", function () {
          // 打印出当前缩放值
          console.log(20180925104046, bmap.getZoom());
        });
      });
    },
    //初始化从后台拿数据 数据的结构和 chartData 一致
    init() {
      ipAccess().then((response) => {
        console.log(response);
        this.chartData = [];
        this.chartData = response.data;
        this.drawLine();
      });
    },
  },
  mounted() {
    //1.查询后台数据
    this.init();
  },
};
</script>

<style scoped>
</style>


总结

本篇主要记录一下 关于如何统计网站访问量,并且利用Echarts + 百度地图 友好的展示出来

1.提供拦截器 拦截Ip 请求,获取到 对应的 城市 我这里使用 纯真qqwry,网上也有其他方法。。

2.解析后 可以根据 key = 城市 存入redis中,利用redis 的 自增操作来 统计城市的 访问量,或者也可以通过Map<String,AtomicLong> 等去统计,然后刷入到存储中 。。 方式很多

3.利用echarts+百度地图案例,暂时统计的数据,可以参考echarts官网

相关文章

网友评论

      本文标题:博客 城市访问量统计并且通过Echarts + 百度地图 展示

      本文链接:https://www.haomeiwen.com/subject/ohafjktx.html