美文网首页
2018-11-17 Spark算子练习

2018-11-17 Spark算子练习

作者: Albert陈凯 | 来源:发表于2018-11-17 13:44 被阅读40次

    常用Transformation(即转换,延迟加载)

    通过并行化scala集合创建RDD

    val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))

    查看该rdd的分区数量

    rdd1.partitions.length

    val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10))
    val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(*2).sortBy(x=>x,true)
    val rdd3 = rdd2.filter(
    >10)
    val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(*2).sortBy(x=>x+"",true)
    val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(
    *2).sortBy(x=>x.toString,true)

    val rdd4 = sc.parallelize(Array("a b c", "d e f", "h i j"))
    rdd4.flatMap(_.split(' ')).collect

    val rdd5 = sc.parallelize(List(List("a b c", "a b b"),List("e f g", "a f g"), List("h i j", "a a b")))

    List("a b c", "a b b") =List("a","b",))

    rdd5.flatMap(.flatMap(.split(" "))).collect

    union求并集,注意类型要一致

    val rdd6 = sc.parallelize(List(5,6,4,7))
    val rdd7 = sc.parallelize(List(1,2,3,4))
    val rdd8 = rdd6.union(rdd7)
    rdd8.distinct.sortBy(x=>x).collect

    intersection求交集

    val rdd9 = rdd6.intersection(rdd7)

    val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 2), ("kitty", 3)))
    val rdd2 = sc.parallelize(List(("jerry", 9), ("tom", 8), ("shuke", 7), ("tom", 2)))

    join(连接)

    val rdd3 = rdd1.join(rdd2)
    val rdd3 = rdd1.leftOuterJoin(rdd2)
    val rdd3 = rdd1.rightOuterJoin(rdd2)

    groupByKey

    val rdd3 = rdd1 union rdd2
    rdd3.groupByKey
    //(tom,CompactBuffer(1, 8, 2))
    rdd3.groupByKey.map(x=>(x._1,x.2.sum))
    groupByKey.mapValues(
    .sum).collect
    Array((tom,CompactBuffer(1, 8, 2)), (jerry,CompactBuffer(9, 2)), (shuke,CompactBuffer(7)), (kitty,CompactBuffer(3)))

    WordCount

    sc.textFile("/root/words.txt").flatMap(x=>x.split(" ")).map((,1)).reduceByKey(+).sortBy(.2,false).collect
    sc.textFile("/root/words.txt").flatMap(x=>x.split(" ")).map((
    ,1)).groupByKey.map(t=>(t._1, t._2.sum)).collect

    cogroup

    val rdd1 = sc.parallelize(List(("tom", 1), ("tom", 2), ("jerry", 3), ("kitty", 2)))
    val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))
    val rdd3 = rdd1.cogroup(rdd2)
    val rdd4 = rdd3.map(t=>(t._1, t._2._1.sum + t._2._2.sum))

    cartesian笛卡尔积

    val rdd1 = sc.parallelize(List("tom", "jerry"))
    val rdd2 = sc.parallelize(List("tom", "kitty", "shuke"))
    val rdd3 = rdd1.cartesian(rdd2)

    ###################################################################################################

    spark action

    val rdd1 = sc.parallelize(List(1,2,3,4,5), 2)

    collect

    rdd1.collect

    reduce

    val r = rdd1.reduce(+)

    count

    rdd1.count

    top

    rdd1.top(2)

    take

    rdd1.take(2)

    first(similer to take(1))

    rdd1.first

    takeOrdered

    rdd1.takeOrdered(3)

    http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

    mapPartitionsWithIndex
    val func = (index: Int, iter: Iterator[(String)]) => {
    iter.map(x => "[partID:" + index + ", val: " + x + "]")
    }

    mapPartitionsWithIndex
    val func = (index: Int, iter: Iterator[Int]) => {
    iter.map(x => "[partID:" + index + ", val: " + x + "]")
    }
    val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)
    rdd1.mapPartitionsWithIndex(func).collect



    aggregate

    def func1(index: Int, iter: Iterator[(Int)]) : Iterator[String] = {
    iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator
    }
    val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)
    rdd1.mapPartitionsWithIndex(func1).collect
    rdd1.aggregate(0)(math.max(_, _), _ + )
    rdd1.aggregate(5)(math.max(
    , _), _ + _)

    val rdd2 = sc.parallelize(List("a","b","c","d","e","f"),2)
    def func2(index: Int, iter: Iterator[(String)]) : Iterator[String] = {
    iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator
    }
    rdd2.aggregate("")(_ + _, _ + )
    rdd2.aggregate("=")(
    + _, _ + _)

    val rdd3 = sc.parallelize(List("12","23","345","4567"),2)
    rdd3.aggregate("")((x,y) => math.max(x.length, y.length).toString, (x,y) => x + y)

    val rdd4 = sc.parallelize(List("12","23","345",""),2)
    rdd4.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)

    val rdd5 = sc.parallelize(List("12","23","","345"),2)
    rdd5.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)



    aggregateByKey

    val pairRDD = sc.parallelize(List( ("cat",2), ("cat", 5), ("mouse", 4),("cat", 12), ("dog", 12), ("mouse", 2)), 2)
    def func2(index: Int, iter: Iterator[(String, Int)]) : Iterator[String] = {
    iter.map(x => "[partID:" + index + ", val: " + x + "]")
    }
    pairRDD.mapPartitionsWithIndex(func2).collect
    pairRDD.aggregateByKey(0)(math.max(_, _), _ + ).collect
    pairRDD.aggregateByKey(100)(math.max(
    , _), _ + _).collect



    checkpoint
    sc.setCheckpointDir("hdfs://node-1.edu360.cn:9000/ck")
    val rdd = sc.textFile("hdfs://node-1.edu360.cn:9000/wc").flatMap(.split(" ")).map((, 1)).reduceByKey(+)
    rdd.checkpoint
    rdd.isCheckpointed
    rdd.count
    rdd.isCheckpointed
    rdd.getCheckpointFile



    coalesce, repartition
    val rdd1 = sc.parallelize(1 to 10, 10)
    val rdd2 = rdd1.coalesce(2, false)
    rdd2.partitions.length



    collectAsMap
    val rdd = sc.parallelize(List(("a", 1), ("b", 2)))
    rdd.collectAsMap



    combineByKey
    val rdd1 = sc.textFile("hdfs://node-1.edu360.cn:9000/wc").flatMap(.split(" ")).map((, 1))
    val rdd2 = rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)
    rdd2.collect

    val rdd3 = rdd1.combineByKey(x => x + 10, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)
    rdd3.collect

    val rdd4 = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)
    val rdd5 = sc.parallelize(List(1,1,2,2,2,1,2,2,2), 3)
    val rdd6 = rdd5.zip(rdd4)
    val rdd7 = rdd6.combineByKey(List(_), (x: List[String], y: String) => x :+ y, (m: List[String], n: List[String]) => m ++ n)



    countByKey

    val rdd1 = sc.parallelize(List(("a", 1), ("b", 2), ("b", 2), ("c", 2), ("c", 1)))
    rdd1.countByKey
    rdd1.countByValue



    filterByRange

    val rdd1 = sc.parallelize(List(("e", 5), ("c", 3), ("d", 4), ("c", 2), ("a", 1)))
    val rdd2 = rdd1.filterByRange("b", "d")
    rdd2.colllect



    flatMapValues
    val a = sc.parallelize(List(("a", "1 2"), ("b", "3 4")))
    rdd3.flatMapValues(_.split(" "))



    foldByKey

    val rdd1 = sc.parallelize(List("dog", "wolf", "cat", "bear"), 2)
    val rdd2 = rdd1.map(x => (x.length, x))
    val rdd3 = rdd2.foldByKey("")(+)

    val rdd = sc.textFile("hdfs://node-1.edu360.cn:9000/wc").flatMap(.split(" ")).map((, 1))
    rdd.foldByKey(0)(+)



    foreachPartition
    val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3)
    rdd1.foreachPartition(x => println(x.reduce(_ + _)))



    keyBy
    val rdd1 = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
    val rdd2 = rdd1.keyBy(_.length)
    rdd2.collect



    keys values
    val rdd1 = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)
    val rdd2 = rdd1.map(x => (x.length, x))
    rdd2.keys.collect
    rdd2.values.collect



    mapPartitions( it: Iterator => {it.map(x => x * 10)})

    相关文章

      网友评论

          本文标题:2018-11-17 Spark算子练习

          本文链接:https://www.haomeiwen.com/subject/oigbfqtx.html