美文网首页
Tensorflow训练自己的SSD目标检测器

Tensorflow训练自己的SSD目标检测器

作者: 技术大渣渣 | 来源:发表于2019-05-21 10:31 被阅读0次

    本文主要讲解如何利用Tensorflow object detection api从0到1训练自己的目标检测器。环境是win10+vscode,ubuntu16.04配置参照官方教程。除第一部分配置在windows和ubuntu下不同外,第二部分的的步骤和代码在两个平台上通用。。。。。。

    一.安装Tensorflow Object Detection API

    1.配置protobuf,下载protoc-3.6.0-win32.zip(https://github.com/google/protobuf/releases),解压后将bin文件夹加入到系统环境变量,cmd中输入protoc然后回车不报错说明安装ok

    2.下载tensorflow models模块,地址https://github.com/tensorflow/models

    3.安装tensorflow model 以及slim

     a.将protoc编译成py,在models-master/research目录下cmd运行:

    protoc object_detection/protos/*.proto --python_out=.
    

     b.进一步安装slim,在models-master/research/slim目录下重命名BUILD文件为BUILD1(运行setup.py时windows下新建的文件夹名build和文件BUILD冲突),然后cmd运行:

    python setup.py install
    

     c.配置path环境变量:包括models-master、research和slim三个文件夹的路径。

     d.在models-master/research目录下cmd运行:

    python setup.py install
    

    安装model模块(一定要首先执行a,因为执行此步时需要将a生成的py文件复制到'C:\Users\user\AppData\Local\Programs\Python\Python36\Lib\site-packages\object_detection-0.1-py3.6.egg\object_detection',若不执行,则会提示cannot import name 'anchor_generator_pb2' )

    另外,我还遇到了ModuleNotFoundError: No module named 'tensorflow.python.saved_model.model_utils',出现原因:升级了tensorflow2.0,又降级到1.13会出现该问题,解决方法:删除tensorflow_estimator重新安装

    pip uninstall tensorflow_estimator
    pip install tensorflow_estimator
    

    4.测试环境,在models-master/research目录下cmd运行:python object_detection/builders/model_builder_test.py,返回ok则表明环境ok!

    二.训练自己的目标检测器

    1.数据集准备

    2.给数据集打标签,采用LabelImg,软件使用可参考《手把手教你图片打标

    原始图像存储在“images”文件夹,打标签后生成的xml文件存储在“annotations”文件夹


    1.PNG

    3.读取所有的xml列表,运行xml_to_csv.py:


    2.PNG
    import os
    import glob
    import pandas as pd
    import xml.etree.ElementTree as ET
    
    
    def xml_to_csv(path):
        xml_list = []
        for xml_file in glob.glob(path + '/*.xml'):
            tree = ET.parse(xml_file)
            root = tree.getroot()
            for member in root.findall('object'):
                value = (root.find('filename').text,
                         int(root.find('size')[0].text),
                         int(root.find('size')[1].text),
                         member[0].text,
                         int(member[4][0].text),
                         int(member[4][1].text),
                         int(member[4][2].text),
                         int(member[4][3].text)
                         )
                xml_list.append(value)
        column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
        xml_df = pd.DataFrame(xml_list, columns=column_name)
        return xml_df
    
    
    def main():
        image_path = os.path.join(os.getcwd(), 'annotations')
        xml_df = xml_to_csv(image_path)
        xml_df.to_csv('data/raccoon_labels.csv', index=None)
        print('Successfully converted xml to csv.')
    
    
    main()
    

    4.将列表数据分为train、validation、test三部分,供训练、验证和测试(也可只分成训练和验证两部分),运行split data.py

    import numpy as np
    import pandas as pd
     
    np.random.seed(1)
    csv_file_url = 'data/raccoon_labels.csv'
    full_data = pd.read_csv(csv_file_url)
    total_file_number = len(full_data)
    print("There are total {} examples in this dataset.".format(total_file_number))
    full_data.head() #Viewing the first 5 lines
    
    
    num_train = int(total_file_number*0.85)
    num_validation = int(total_file_number*0.1)
    num_test = total_file_number-num_train-num_validation
    
    assert num_train + num_validation + num_test <= total_file_number, "Not enough examples for your choice."
    print("Looks good! {} for train, {} for validation and {} for test.".format(num_train, num_validation, num_test))
    
    
    index_train = np.random.choice(total_file_number, size=num_train, replace=False)
    index_validation_test = np.setdiff1d(list(range(total_file_number)), index_train)
    index_validation = np.random.choice(index_validation_test, size=num_validation, replace=False)
    index_test = np.setdiff1d(index_validation_test, index_validation)
    
    train = full_data.iloc[index_train]
    validation = full_data.iloc[index_validation]
    test = full_data.iloc[index_test]
    
    
    train.to_csv('data/data_train.csv', index=None)
    validation.to_csv("data/data_validation.csv", index=None)
    test.to_csv('data/data_test.csv', index=None)
    
    print("All done!")
    

    5.生成tfrecord,运行generate_tfrecord.py:

    """
    Usage:
      # From tensorflow/models/
      # Create train data:
      python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=train.record
    
      # Create test data:
      python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record
    """
    from __future__ import division
    from __future__ import print_function
    from __future__ import absolute_import
    
    import os
    import io
    import pandas as pd
    import tensorflow as tf
    
    from PIL import Image
    from object_detection.utils import dataset_util
    from collections import namedtuple, OrderedDict
    
    flags = tf.app.flags
    flags.DEFINE_string('csv_input', 'data/data_test.csv', 'Path to the CSV input')
    flags.DEFINE_string('output_path', 'data/data_test.record', 'Path to output TFRecord')
    flags.DEFINE_string('image_dir', 'images/', 'Path to images')
    FLAGS = flags.FLAGS
    
    
    # TO-DO replace this with label map
    def class_text_to_int(row_label):
        if row_label == 'raccoon':
            return 1
        else:
            None
    
    
    def split(df, group):
        data = namedtuple('data', ['filename', 'object'])
        gb = df.groupby(group)
        return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
    
    
    def create_tf_example(group, path):
        with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
            encoded_jpg = fid.read()
        encoded_jpg_io = io.BytesIO(encoded_jpg)
        image = Image.open(encoded_jpg_io)
        width, height = image.size
    
        filename = group.filename.encode('utf8')
        image_format = b'jpg'
        xmins = []
        xmaxs = []
        ymins = []
        ymaxs = []
        classes_text = []
        classes = []
    
        for index, row in group.object.iterrows():
            xmins.append(row['xmin'] / width)
            xmaxs.append(row['xmax'] / width)
            ymins.append(row['ymin'] / height)
            ymaxs.append(row['ymax'] / height)
            classes_text.append(row['class'].encode('utf8'))
            classes.append(class_text_to_int(row['class']))
    
        tf_example = tf.train.Example(features=tf.train.Features(feature={
            'image/height': dataset_util.int64_feature(height),
            'image/width': dataset_util.int64_feature(width),
            'image/filename': dataset_util.bytes_feature(filename),
            'image/source_id': dataset_util.bytes_feature(filename),
            'image/encoded': dataset_util.bytes_feature(encoded_jpg),
            'image/format': dataset_util.bytes_feature(image_format),
            'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
            'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
            'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
            'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
            'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
            'image/object/class/label': dataset_util.int64_list_feature(classes),
        }))
        return tf_example
    
    
    def main(_):
        writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
        path = os.path.join(FLAGS.image_dir)
        examples = pd.read_csv(FLAGS.csv_input)
        grouped = split(examples, 'filename')
        for group in grouped:
            tf_example = create_tf_example(group, path)
            writer.write(tf_example.SerializeToString())
    
        writer.close()
        output_path = os.path.join(os.getcwd(), FLAGS.output_path)
        print('Successfully created the TFRecords: {}'.format(output_path))
    
    
    if __name__ == '__main__':
        tf.app.run()
    

    6.框架需要我们定义好我们的类别ID与类别名称的关系,通常用pbtxt格式文件保存,我们在~/master/data/config目录下新建一个名为raccoon_label_map.pbtxt的文本文件(仿照 TensorFlow models/research/object_detection/data 文件夹下的 .pbtxt 文件编写自己的 .pbtxt 文件),内容如下:

    item {
      id: 1
      name: 'raccoon'
    }
    

    7.使用ssd_mobilenet_v1 网络,并且我们需要使用迁移学习的加速我们的训练过程,我们将使用ssd_mobilenet_v1_coco作为预训练模型来进行finetune训练,下载地址 ssd_mobilenet_v1_coco,下载解压后同样放在~/master/data/config/目录下

    8.复制TensorFlow
    models/research/object_detection/samples/configs 下的ssd_mobilenet_v1_coco.config 到 ~/master/data/config/下,重命名为ssd_mobilenet_v1_raccoon.config,并做如下修改:

    num_classes: 90   改为  num_classes: 1
    ...
    type: 'ssd_mobilenet_v1' 改为 type: 'ssd_mobilenet_v1' #若选择其他预训练模型则对应更改
    ...
    fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" 更改为步骤7中下载的预训练模型地址
    ...
    train_input_reader: {
      tf_record_input_reader {
        input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record-?????-of-00100"
      }
      label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
    }  #更改为自己的地址
    ...
    eval_config: {
      num_examples: 21
      # Note: The below line limits the evaluation process to 10 evaluations.
      # Remove the below line to evaluate indefinitely.
      max_evals: 10
    }
    
    eval_input_reader: {
      tf_record_input_reader {
        input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record-?????-of-00010"
      }
      label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
      shuffle: false
      num_readers: 1
    } #更改为自己地址
    # 很多超参数也可以调
    

    9.在Tensorflow models-master/research/object_detection(tensorflow object detection api)路径下,执行下面的相关命令进行训练:

    python model_main.py --model_dir=./master/model/train/   
    --pipeline_config_path=./master/data/config/ssd_mobilenet_v1_raccoon.config
    

    提示 No module named 'pycocotools',windows 下安装即可:

    pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
    

    若windows下权限不够就用管理员权限运行cmd训练

    10.在Tensorflow models-master/research/object_detection/model_main.py
    中加入如下代码,进行log打印:

    tf.logging.set_verbosity(tf.logging.INFO)
    

    11.查看实时训练曲线

    tensorboard --logdir=/home/.../model/train/
    

    12.单张图片测试模型效果,运行test_model_image.py:

    import numpy as np
    import os
    import sys
    import tensorflow as tf
    import cv2
    
    #add tensorflow object detection api(must!!!!!)
    sys.path
    sys.path.insert(0, './python/tensorflow-ssd/models-master/research/object_detection/')
    
    # This is needed since the notebook is stored in the object_detection folder.
    sys.path.append("..")
    from object_detection.utils import ops as utils_ops
    print(tf.__version__)
    # if tf.__version__ < '1.4.0':
    #   raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
    
    
    # This is needed to display the images.
    
    from utils import label_map_util
    from utils import visualization_utils as vis_util
    
    # What model to download.
    MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
    
    # Path to frozen detection graph. This is the actual model that is used for the object detection.
    PATH_TO_CKPT = "./python/tensorflow-ssd/raccoon_dataset-master/model/freezed_pb/frozen_inference_graph.pb"
    
    # List of the strings that is used to add correct label for each box.
    PATH_TO_LABELS = os.path.join('data/config', 'raccoon_label_map.pbtxt')
    NUM_CLASSES = 1
    
    #Load a (frozen) Tensorflow model into memory
    detection_graph = tf.Graph()
    with detection_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
    
    #Loading label map
    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
    category_index = label_map_util.create_category_index(categories)
    
    #Helper code
    def load_image_into_numpy_array(image):
      (im_width, im_height) = image.size
      return np.array(image.getdata()).reshape(
          (im_height, im_width, 3)).astype(np.uint8)
    
    #Detection
    def run_inference_for_single_image(image, graph):
      with graph.as_default():
        with tf.Session() as sess:
          # Get handles to input and output tensors
          ops = tf.get_default_graph().get_operations()
          all_tensor_names = {output.name for op in ops for output in op.outputs}
          tensor_dict = {}
          for key in [
              'num_detections', 'detection_boxes', 'detection_scores',
              'detection_classes', 'detection_masks'
          ]:
            tensor_name = key + ':0'
            if tensor_name in all_tensor_names:
              tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
                  tensor_name)
          if 'detection_masks' in tensor_dict:
            # The following processing is only for single image
            detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
            detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
            # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
            real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
            detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
            detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
            detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
                detection_masks, detection_boxes, image.shape[0], image.shape[1])
            detection_masks_reframed = tf.cast(
                tf.greater(detection_masks_reframed, 0.5), tf.uint8)
            # Follow the convention by adding back the batch dimension
            tensor_dict['detection_masks'] = tf.expand_dims(
                detection_masks_reframed, 0)
          image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
    
          # Run inference
          output_dict = sess.run(tensor_dict,
                                 feed_dict={image_tensor: np.expand_dims(image, 0)})
    
          # all outputs are float32 numpy arrays, so convert types as appropriate
          output_dict['num_detections'] = int(output_dict['num_detections'][0])
          output_dict['detection_classes'] = output_dict[
              'detection_classes'][0].astype(np.uint8)
          output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
          output_dict['detection_scores'] = output_dict['detection_scores'][0]
          if 'detection_masks' in output_dict:
            output_dict['detection_masks'] = output_dict['detection_masks'][0]
      return output_dict
    
    
    
    
    image_np = cv2.imread("./images/raccoon-96.jpg")
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
    image_np_expanded = np.expand_dims(image_np, axis=0)
    # Actual detection.
    output_dict = run_inference_for_single_image(image_np, detection_graph)
    # Visualization of the results of a detection.
    vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        output_dict['detection_boxes'],
        output_dict['detection_classes'],
        output_dict['detection_scores'],
        category_index,
        instance_masks=output_dict.get('detection_masks'),
        use_normalized_coordinates=True,
        line_thickness=8)
    
    cv2.imshow("test",np.array(image_np,dtype=np.uint8))
    cv2.waitKey()
      
    

    13.视频测试模型效果,运行test_model_video.py(需进一步把类别显示加进去):

    import time
    
    import cv2
    import numpy as np
    import tensorflow as tf
    
    #--------------Model preparation----------------
    # Path to frozen detection graph. This is the actual model that is used for 
    # the object detection.
    PATH_TO_CKPT = 'path_to_your_frozen_inference_graph.pb'
    
    # Load a (frozen) Tensorflow model into memory
    detection_graph = tf.Graph()
    with detection_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
        
    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
    # Each box represents a part of the image where a particular 
    # object was detected.
    gboxes = detection_graph.get_tensor_by_name('detection_boxes:0')
    # Each score represent how level of confidence for each of the objects.
    # Score is shown on the result image, together with the class label.
    gscores = detection_graph.get_tensor_by_name('detection_scores:0')
    gclasses = detection_graph.get_tensor_by_name('detection_classes:0')
    gnum_detections = detection_graph.get_tensor_by_name('num_detections:0')
    
    
    # TODO: Add class names showing in the image
    def detect_image_objects(image, sess, detection_graph):
        # Expand dimensions since the model expects images to have 
        # shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image, axis=0)
    
        # Actual detection.
        (boxes, scores, classes, num_detections) = sess.run(
            [gboxes, gscores, gclasses, gnum_detections],
            feed_dict={image_tensor: image_np_expanded})
    
        # Visualization of the results of a detection.
        boxes = np.squeeze(boxes)
        scores = np.squeeze(scores)
        height, width = image.shape[:2]
        for i in range(boxes.shape[0]):
            if (scores is None or 
                scores[i] > 0.5):
                ymin, xmin, ymax, xmax = boxes[i]
                ymin = int(ymin * height)
                ymax = int(ymax * height)
                xmin = int(xmin * width)
                xmax = int(xmax * width)
                
                score = None if scores is None else scores[i]
                font = cv2.FONT_HERSHEY_SIMPLEX
                text_x = np.max((0, xmin - 10))
                text_y = np.max((0, ymin - 10))
                cv2.putText(image, 'Detection score: ' + str(score),
                            (text_x, text_y), font, 0.4, (0, 255, 0))
                cv2.rectangle(image, (xmin, ymin), (xmax, ymax),
                              (0, 255, 0), 2)
        return image
    
    
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            video_path = 'path_to_your_video'
            capture = cv2.VideoCapture(video_path)
            while capture.isOpened():
                if cv2.waitKey(30) & 0xFF == ord('q'):
                    break
                ret, frame = capture.read()
                if not ret:
                    break
    
                t_start = time.clock()
                detect_image_objects(frame, sess, detection_graph)
                t_end = time.clock()
                print('detect time per frame: ', t_end - t_start)
                cv2.imshow('detected', frame)
            capture.release()
            cv2.destroyAllWindows()
    

    后续代码和小样本数据集会放在我的github上,敬请期待。。。。

    资料:
    1.Tensorflow object detection 官方文档
    2.https://www.jianshu.com/p/86894ccaa407

    相关文章

      网友评论

          本文标题:Tensorflow训练自己的SSD目标检测器

          本文链接:https://www.haomeiwen.com/subject/ojelzqtx.html