美文网首页
C10K问题 - 使用阻塞I/O和进程模型

C10K问题 - 使用阻塞I/O和进程模型

作者: taj3991 | 来源:发表于2020-01-01 17:07 被阅读0次

    父进程和子进程

    我们知道,进程是程序执行的最小单位,一个进程有完整的地址空间、程序计数器等,如果想创建一个新的进程,使用函数 fork 就可以。

    
    pid_t fork(void)
    返回:在子进程中为0,在父进程中为子进程ID,若出错则为-1
    

    如果你是第一次使用这个函数,你会觉得难以理解的地方在于,虽然我们的程序调用 fork 一次,它却在父、子进程里各返回一次。在调用该函数的进程(即为父进程)中返回的是新派生的进程 ID 号,在子进程中返回的值为 0。想要知道当前执行的进程到底是父进程,还是子进程,只能通过返回值来进行判断。

    fork 函数实现的时候,实际上会把当前父进程的所有相关值都克隆一份,包括地址空间、打开的文件描述符、程序计数器等,就连执行代码也会拷贝一份,新派生的进程的表现行为和父进程近乎一样,就好像是派生进程调用过 fork 函数一样。

    为了区别两个不同的进程,实现者可以通过改变 fork 函数的栈空间值来判断,对应到程序中就是返回值的不同。

    这样就形成了文稿中的编程范式:

    
    if(fork() == 0){
      do_child_process(); //子进程执行代码
    }else{
      do_parent_process();  //父进程执行代码
    }
    

    当一个子进程退出时,系统内核还保留了该进程的若干信息,比如退出状态。这样的进程如果不回收,就会变成僵尸进程。在 Linux 下,这样的“僵尸”进程会被挂到进程号为 1 的 init 进程上。所以,由父进程派生出来的子进程,也必须由父进程负责回收,否则子进程就会变成僵尸进程。僵尸进程会占用不必要的内存空间,如果量多到了一定数量级,就会耗尽我们的系统资源。

    有两种方式可以在子进程退出后回收资源,分别是调用 wait 和 waitpid 函数。

    
    pid_t wait(int *statloc);
    pid_t waitpid(pid_t pid, int *statloc, int options);
    

    函数 wait 和 waitpid 都可以返回两个值,一个是函数返回值,表示已终止子进程的进程 ID 号,另一个则是通过 statloc 指针返回子进程终止的实际状态。这个状态可能的值为正常终止、被信号杀死、作业控制停止等。

    如果没有已终止的子进程,而是有一个或多个子进程在正常运行,那么 wait 将阻塞,直到第一个子进程终止。

    waitpid 可以认为是 wait 函数的升级版,它的参数更多,提供的控制权也更多。pid 参数允许我们指定任意想等待终止的进程 ID,值 -1 表示等待第一个终止的子进程。options 参数给了我们更多的控制选项。

    处理子进程退出的方式一般是注册一个信号处理函数,捕捉信号 SIGCHILD 信号,然后再在信号处理函数里调用 waitpid 函数来完成子进程资源的回收。SIGCHLD 是子进程退出或者中断时由内核向父进程发出的信号,默认这个信号是忽略的。所以,如果想在子进程退出时能回收它,需要像下面一样,注册一个 SIGCHOLD 函数。

    
    signal(SIGCHLD, sigchld_handler);  
    

    阻塞 I/O 的进程模型

    为了说明使用阻塞 I/O 和进程模型,我们假设有两个客户端,服务器初始监听在套接字 lisnted_fd 上。当第一个客户端发起连接请求,连接建立后产生出连接套接字,此时,父进程派生出一个子进程,在子进程中,使用连接套接字和客户端通信,因此子进程不需要关心监听套接字,只需要关心连接套接字;父进程则相反,将客户服务交给子进程来处理,因此父进程不需要关心连接套接字,只需要关心监听套接字。

    这张图描述了从连接请求到连接建立,父进程派生子进程为客户服务。

    假设父进程之后又接收了新的连接请求,从 accept 调用返回新的已连接套接字,父进程又派生出另一个子进程,这个子进程用第二个已连接套接字为客户端服务。这张图同样描述了这个过程。

    现在,服务器端的父进程继续监听在套接字上,等待新的客户连接到来;两个子进程分别使用两个不同的连接套接字为两个客户服务。

    程序讲解

    我们将前面的内容串联起来,就是下面完整的一个基于进程模型的服务器端程序。

    
    #include "lib/common.h"
    
    #define MAX_LINE 4096
    
    char rot13_char(char c) {
        if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
            return c + 13;
        else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
            return c - 13;
        else
            return c;
    }
    
    void child_run(int fd) {
        char outbuf[MAX_LINE + 1];
        size_t outbuf_used = 0;
        ssize_t result;
    
        while (1) {
            char ch;
            result = recv(fd, &ch, 1, 0);
            if (result == 0) {
                break;
            } else if (result == -1) {
                perror("read");
                break;
            }
    
            if (outbuf_used < sizeof(outbuf)) {
                outbuf[outbuf_used++] = rot13_char(ch);
            }
    
            if (ch == '\n') {
                send(fd, outbuf, outbuf_used, 0);
                outbuf_used = 0;
                continue;
            }
        }
    }
    
    void sigchld_handler(int sig) {
        while (waitpid(-1, 0, WNOHANG) > 0);
        return;
    }
    
    int main(int c, char **v) {
        int listener_fd = tcp_server_listen(SERV_PORT);
        signal(SIGCHLD, sigchld_handler);
        while (1) {
            struct sockaddr_storage ss;
            socklen_t slen = sizeof(ss);
            int fd = accept(listener_fd, (struct sockaddr *) &ss, &slen);
            if (fd < 0) {
                error(1, errno, "accept failed");
                exit(1);
            }
    
            if (fork() == 0) {
                close(listener_fd);
                child_run(fd);
                exit(0);
            } else {
                close(fd);
            }
        }
    
        return 0;
    }
    

    程序的 48 行注册了一个信号处理函数,用来回收子进程资源。函数 sigchld_handler,在一个循环体内调用了 waitpid 函数,以便回收所有已终止的子进程。这里选项 WNOHANG 用来告诉内核,即使还有未终止的子进程也不要阻塞在 waitpid 上。注意这里不可以使用 wait,因为 wait 函数在有未终止子进程的情况下,没有办法不阻塞。

    程序的 58-62 行,通过判断 fork 的返回值为 0,进入子进程处理逻辑。按照前面的讲述,子进程不需要关心监听套接字,故而在这里关闭掉监听套接字 listen_fd,之后调用 child_run 函数使用已连接套接字 fd 来进行数据读写。第 63 行,进入的是父进程处理逻辑,父进程不需要关心连接套接字,所以在这里关闭连接套接字。

    还记得第 11 讲中讲到的 close 函数吗?我们知道,从父进程派生出的子进程,同时也会复制一份描述字,也就是说,连接套接字和监听套接字的引用计数都会被加 1,而调用 close 函数则会对引用计数进行减 1 操作,这样在套接字引用计数到 0 时,才可以将套接字资源回收。所以,这里的 close 函数非常重要,缺少了它们,就会引起服务器端资源的泄露。

    child_run 函数中,通过一个 while 循环来不断和客户端进行交互,依次读出字符之后,进行了简单的转码,如果读到回车符,则将转码之后的结果通过连接套接字发送出去。这样的回显方式,显得比较有“交互感”。

    总结

    使用阻塞 I/O 和进程模型,为每一个连接创建一个独立的子进程来进行服务,是一个非常简单有效的实现方式,这种方式可能很难足高性能程序的需求,但好处在于实现简单。在实现这样的程序时,我们需要注意两点:

    • 要注意对套接字的关闭梳理;
    • 要注意对子进程进行回收,避免产生不必要的僵尸进程。

    原文

    https://time.geekbang.org/column/article/143410

    相关文章

      网友评论

          本文标题:C10K问题 - 使用阻塞I/O和进程模型

          本文链接:https://www.haomeiwen.com/subject/ojhgoctx.html