父进程和子进程
我们知道,进程是程序执行的最小单位,一个进程有完整的地址空间、程序计数器等,如果想创建一个新的进程,使用函数 fork 就可以。
pid_t fork(void)
返回:在子进程中为0,在父进程中为子进程ID,若出错则为-1
如果你是第一次使用这个函数,你会觉得难以理解的地方在于,虽然我们的程序调用 fork 一次,它却在父、子进程里各返回一次。在调用该函数的进程(即为父进程)中返回的是新派生的进程 ID 号,在子进程中返回的值为 0。想要知道当前执行的进程到底是父进程,还是子进程,只能通过返回值来进行判断。
fork 函数实现的时候,实际上会把当前父进程的所有相关值都克隆一份,包括地址空间、打开的文件描述符、程序计数器等,就连执行代码也会拷贝一份,新派生的进程的表现行为和父进程近乎一样,就好像是派生进程调用过 fork 函数一样。
为了区别两个不同的进程,实现者可以通过改变 fork 函数的栈空间值来判断,对应到程序中就是返回值的不同。
这样就形成了文稿中的编程范式:
if(fork() == 0){
do_child_process(); //子进程执行代码
}else{
do_parent_process(); //父进程执行代码
}
当一个子进程退出时,系统内核还保留了该进程的若干信息,比如退出状态。这样的进程如果不回收,就会变成僵尸进程。在 Linux 下,这样的“僵尸”进程会被挂到进程号为 1 的 init 进程上。所以,由父进程派生出来的子进程,也必须由父进程负责回收,否则子进程就会变成僵尸进程。僵尸进程会占用不必要的内存空间,如果量多到了一定数量级,就会耗尽我们的系统资源。
有两种方式可以在子进程退出后回收资源,分别是调用 wait 和 waitpid 函数。
pid_t wait(int *statloc);
pid_t waitpid(pid_t pid, int *statloc, int options);
函数 wait 和 waitpid 都可以返回两个值,一个是函数返回值,表示已终止子进程的进程 ID 号,另一个则是通过 statloc 指针返回子进程终止的实际状态。这个状态可能的值为正常终止、被信号杀死、作业控制停止等。
如果没有已终止的子进程,而是有一个或多个子进程在正常运行,那么 wait 将阻塞,直到第一个子进程终止。
waitpid 可以认为是 wait 函数的升级版,它的参数更多,提供的控制权也更多。pid 参数允许我们指定任意想等待终止的进程 ID,值 -1 表示等待第一个终止的子进程。options 参数给了我们更多的控制选项。
处理子进程退出的方式一般是注册一个信号处理函数,捕捉信号 SIGCHILD 信号,然后再在信号处理函数里调用 waitpid 函数来完成子进程资源的回收。SIGCHLD 是子进程退出或者中断时由内核向父进程发出的信号,默认这个信号是忽略的。所以,如果想在子进程退出时能回收它,需要像下面一样,注册一个 SIGCHOLD 函数。
signal(SIGCHLD, sigchld_handler);
阻塞 I/O 的进程模型
为了说明使用阻塞 I/O 和进程模型,我们假设有两个客户端,服务器初始监听在套接字 lisnted_fd 上。当第一个客户端发起连接请求,连接建立后产生出连接套接字,此时,父进程派生出一个子进程,在子进程中,使用连接套接字和客户端通信,因此子进程不需要关心监听套接字,只需要关心连接套接字;父进程则相反,将客户服务交给子进程来处理,因此父进程不需要关心连接套接字,只需要关心监听套接字。
这张图描述了从连接请求到连接建立,父进程派生子进程为客户服务。
假设父进程之后又接收了新的连接请求,从 accept 调用返回新的已连接套接字,父进程又派生出另一个子进程,这个子进程用第二个已连接套接字为客户端服务。这张图同样描述了这个过程。
现在,服务器端的父进程继续监听在套接字上,等待新的客户连接到来;两个子进程分别使用两个不同的连接套接字为两个客户服务。
程序讲解
我们将前面的内容串联起来,就是下面完整的一个基于进程模型的服务器端程序。
#include "lib/common.h"
#define MAX_LINE 4096
char rot13_char(char c) {
if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
return c + 13;
else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
return c - 13;
else
return c;
}
void child_run(int fd) {
char outbuf[MAX_LINE + 1];
size_t outbuf_used = 0;
ssize_t result;
while (1) {
char ch;
result = recv(fd, &ch, 1, 0);
if (result == 0) {
break;
} else if (result == -1) {
perror("read");
break;
}
if (outbuf_used < sizeof(outbuf)) {
outbuf[outbuf_used++] = rot13_char(ch);
}
if (ch == '\n') {
send(fd, outbuf, outbuf_used, 0);
outbuf_used = 0;
continue;
}
}
}
void sigchld_handler(int sig) {
while (waitpid(-1, 0, WNOHANG) > 0);
return;
}
int main(int c, char **v) {
int listener_fd = tcp_server_listen(SERV_PORT);
signal(SIGCHLD, sigchld_handler);
while (1) {
struct sockaddr_storage ss;
socklen_t slen = sizeof(ss);
int fd = accept(listener_fd, (struct sockaddr *) &ss, &slen);
if (fd < 0) {
error(1, errno, "accept failed");
exit(1);
}
if (fork() == 0) {
close(listener_fd);
child_run(fd);
exit(0);
} else {
close(fd);
}
}
return 0;
}
程序的 48 行注册了一个信号处理函数,用来回收子进程资源。函数 sigchld_handler,在一个循环体内调用了 waitpid 函数,以便回收所有已终止的子进程。这里选项 WNOHANG 用来告诉内核,即使还有未终止的子进程也不要阻塞在 waitpid 上。注意这里不可以使用 wait,因为 wait 函数在有未终止子进程的情况下,没有办法不阻塞。
程序的 58-62 行,通过判断 fork 的返回值为 0,进入子进程处理逻辑。按照前面的讲述,子进程不需要关心监听套接字,故而在这里关闭掉监听套接字 listen_fd,之后调用 child_run 函数使用已连接套接字 fd 来进行数据读写。第 63 行,进入的是父进程处理逻辑,父进程不需要关心连接套接字,所以在这里关闭连接套接字。
还记得第 11 讲中讲到的 close 函数吗?我们知道,从父进程派生出的子进程,同时也会复制一份描述字,也就是说,连接套接字和监听套接字的引用计数都会被加 1,而调用 close 函数则会对引用计数进行减 1 操作,这样在套接字引用计数到 0 时,才可以将套接字资源回收。所以,这里的 close 函数非常重要,缺少了它们,就会引起服务器端资源的泄露。
child_run 函数中,通过一个 while 循环来不断和客户端进行交互,依次读出字符之后,进行了简单的转码,如果读到回车符,则将转码之后的结果通过连接套接字发送出去。这样的回显方式,显得比较有“交互感”。
总结
使用阻塞 I/O 和进程模型,为每一个连接创建一个独立的子进程来进行服务,是一个非常简单有效的实现方式,这种方式可能很难足高性能程序的需求,但好处在于实现简单。在实现这样的程序时,我们需要注意两点:
- 要注意对套接字的关闭梳理;
- 要注意对子进程进行回收,避免产生不必要的僵尸进程。
网友评论