美文网首页
Exercise_10: The Solar System

Exercise_10: The Solar System

作者: Damonphysics | 来源:发表于2016-11-27 20:19 被阅读0次

    We begin with the simplest situation,a sun and a single planet,and investigate a few of the properties of this model solar system.

    solar system.gif
    solar system.gif

    According to Newton's law of gravitation the magnitude of the force is given by

    ![](http://latex.codecogs.com/png.latex?F_G=\frac{G M_S M_E}{r^2})

    and we can obtain that:

    ![](http://latex.codecogs.com/png.latex?\frac{dv_x}{dt}=-\frac{GM_s M_E x}{r^3})

    Earth Orbiting the Sun

    code1,as follows:

    #coding:utf-8
    import pylab as pl
    import numpy as np
    import math
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from matplotlib import animation
    
    class circle():
        def __init__(self,x0=1,y0=0,t0=0,vx0=0,vy0=2*math.pi,dt0=0.001,total_time=10):
            self.x=[x0]
            self.y=[y0]
            self.vx=[vx0]
            self.vy=[vy0]
            self.R=x0**2+y0**2
            self.t=[t0]
            self.dt=dt0
            self.T=total_time
        def run(self):
            for i in range(int(self.T/self.dt)):
                vx=self.vx[-1]-(4*math.pi**2*self.x[-1]/self.R**2)*self.dt
                vy=self.vy[-1]-(4*math.pi**2*self.y[-1]/self.R**2)*self.dt
                self.vx.append(vx)
                self.vy.append(vy)
                self.x.append(self.vx[-1] * self.dt + self.x[-1])
                self.y.append(self.vy[-1] * self.dt + self.y[-1])
        def show(self):
            pl.plot(self.x, self.y, '-', label='tra')
            pl.xlabel('x(AU)')
            pl.ylabel('y(AU)')
            pl.title('Earth orbiting the Sun')
            pl.xlim(-1.2,1.2)
            pl.ylim(-1.2,1.2)
            pl.axis('equal')
            pl.show()
    a=circle()
    a.run()
    a.show()
    

    we can use the animation of matplotlib to gain the cartoon,

    add follow codes:

     def drawtrajectory(self):
            fig=plt.figure()
            ax = plt.axes(title=('Earth orbiting the Sun'),
                          aspect='equal', autoscale_on=False,
                          xlim=(-1.1, 1.1), ylim=(-1.1, 1.1),
                          xlabel=('x'),ylabel=('y'))
            line=ax.plot([],[],'b')
            point=ax.plot([],[],'ro',markersize=10)
            images=[]
            def init():
                line=ax.plot([],[],'b',markersize=8)
                point=ax.plot([],[],'ro',markersize=10)
                return line,point
            def anmi(i):
                ax.clear()
                line=ax.plot(self.x[0:10*i],self.y[0:10*i],'b',markersize=8)
                point=ax.plot(self.x[10*i-1:10*i],self.y[10*i-1:10*i],'ro',markersize=10)
                return line,point
            anmi=animation.FuncAnimation(fig,anmi,init_func=init,frames=10000,interval=1,
                                         blit=False,repeat=False)
    

    we get follow gif

    Earth Orbiting the Sun

    If we consider the reduced mass

    ![](http://latex.codecogs.com/png.latex?\mu\equiv \frac{m1m2}{m1+m2})

    The orbital trajectory for a body of reduced mass is given in polar coordinates by

    ![](http://latex.codecogs.com/png.latex?\frac{d^2}{dt ^2} (\frac{1}{r})+\frac{1}{r}=-\frac{\mu r2}{L2} F(r))
    consider

    Beta=3.0 t=0.3yr v=1.7pi.png Beta=2.5,t=1.5yr,v=1.7pi.png Beta=2.3,t=10yr,v=1.7pi.png

    code

    #coding:utf-8
    import pylab as pl
    import numpy as np
    import math
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from matplotlib import animation
    
    class circle():
        def __init__(self,x0=1,y0=0,t0=0,vx0=0,vy0=1.7*math.pi,dt0=0.001,Beta=2.3,total_time=10):
            self.x=[x0]
            self.y=[y0]
            self.vx=[vx0]
            self.vy=[vy0]
            self.t=[t0]
            self.dt=dt0
            self.T=total_time
            self.beta=Beta
        def run(self):
            for i in range(int(self.T/self.dt)):
                R=(self.x[-1]**2+self.y[-1]**2)**0.5
                vx=self.vx[-1]-(4*math.pi**2*self.x[-1]/R**(self.beta+1))*self.dt
                vy=self.vy[-1]-(4*math.pi**2*self.y[-1]/R**(self.beta+1))*self.dt
                self.vx.append(vx)
                self.vy.append(vy)
                self.x.append(self.vx[-1] * self.dt + self.x[-1])
                self.y.append(self.vy[-1] * self.dt + self.y[-1])
        def show(self):
            pl.plot(self.x, self.y, '-', label='tra')
            pl.xlabel('x(AU)')
            pl.ylabel('y(AU)')
            pl.title('Earth orbiting the Sun')
            pl.xlim(-1,1)
            pl.ylim(-1,1)
            pl.axis('equal')
            pl.show()
        def drawtrajectory(self):
            fig=plt.figure()
            ax = plt.axes(title=('Earth orbiting the Sun '),
                          aspect='equal', autoscale_on=False,
                          xlim=(-1.1, 1.1), ylim=(-1.1, 1.1),
                          xlabel=('x'),ylabel=('y'))
            line=ax.plot([],[],'b')
            point=ax.plot([],[],'ro',markersize=10)
            images=[]
            def init():
                line=ax.plot([],[],'b',markersize=8)
                point=ax.plot([],[],'ro',markersize=10)
                return line,point
            def anmi(i):
                ax.clear()
                line=ax.plot(self.x[0:10*i],self.y[0:10*i],'b',markersize=8)
                point=ax.plot(self.x[10*i-1:10*i],self.y[10*i-1:10*i],'ro',markersize=10)
                return line,point
            anmi=animation.FuncAnimation(fig,anmi,init_func=init,frames=100000,interval=1,
                                         blit=False,repeat=False)
            plt.show()
    
    
    a=circle()
    a.run()
    a.show()
    #a.drawtrajectory()
    

    then we get the animation

    Beta=3.0,v=2.0pi,t=200yr

    for the problem 4.8, I use the follow code to calculate

    import pylab as pl
    import numpy as np
    import math
    class circle():
        def __init__(self,x0=0.72,y0=0,t0=0,vx0=0,dt0=0.001,Beta=2.0,total_time=10,e0=0.007):
            self.x=[x0]
            self.y=[y0]
            self.vx=[vx0]
            self.vy=[]
            self.t=[t0]
            self.dt=dt0
            self.T=total_time
            self.beta=Beta
            self.e=e0
    
        def run(self):
            vy0=2*math.pi*(1-self.e)/math.sqrt(1+self.e)
            self.vy.append(vy0)
            for i in range(int(self.T/self.dt)):
                R=(self.x[-1]**2+self.y[-1]**2)**0.5
                vx=self.vx[-1]-(4*math.pi**2*self.x[-1]/R**(self.beta+1))*self.dt
                vy=self.vy[-1]-(4*math.pi**2*self.y[-1]/R**(self.beta+1))*self.dt
                self.vx.append(vx)
                self.vy.append(vy)
                self.x.append(self.vx[-1] * self.dt + self.x[-1])
                self.y.append(self.vy[-1] * self.dt + self.y[-1])
                self.t.append(self.t[-1]+self.dt)
                if(self.y[-1]<0):
                    a=(self.x[0]-self.x[-1])/2
                    T=2*self.t[-1]
                    k=T**2/a**3
                    break
            print(k)
    a=circle()
    a.run()
    

    For Venus, I just get the value

    and others can just be got by the similar way 2333

    Acknowledgements

    Thanks for Nemo's or (卢江玮的) help

    相关文章

      网友评论

          本文标题:Exercise_10: The Solar System

          本文链接:https://www.haomeiwen.com/subject/omlnpttx.html