美文网首页大数据 爬虫Python AI SqlPython小哥哥
120行代码爬取豆瓣电影,附源码!就拿刚上映的复联4做例子!

120行代码爬取豆瓣电影,附源码!就拿刚上映的复联4做例子!

作者: 14e61d025165 | 来源:发表于2019-04-24 14:51 被阅读0次

    学习爬虫,拿豆瓣电影进行练手,无奈豆瓣电影存在反爬机制,爬完250就会重定向要求我进行登陆操作,所以我这一次只爬取前50进行相关测试,废话不多说,我们来看下源代码:

    import requests
    from bs4 import BeautifulSoup
    import re
    import pandas
    headers = {
    'Host':'movie.douban.com',
    'Origin':'movie.douban.com',
    'User-Agent':'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Mobile Safari/537.36',
    }
    base_url = 'https://movie.douban.com/top250?start={}&filter='
    response = requests.get('https://movie.douban.com/top250?start=0&filter=', headers = headers)
    if response.status_code == 200:
    # print(response.text)
    pass
    pattern1 = re.compile('<div.?class="item">.?<div.?class="pic">.?<a.?href="(.?)">', re.S) # 去掉所有换行符,并用正则表达式去匹配每一个页面的具体电影
    urls = re.findall(pattern1, response.text)
    directors = [] # 导演
    names = [] # 电影名
    stars = [] # 主演
    countrys = [] # 电影的出产地
    languages = [] # 电影语言
    headers_urls = {
    'Host':'movie.douban.com',
    'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36'
    }

    <span property="v:itemreviewed">肖申克的救赎 The Shawshank Redemption</span>

    <a href="/celebrity/1047973/" rel="v:directedBy">弗兰克·德拉邦特</a>

    <a href="/celebrity/1054521/" rel="v:starring">蒂姆·罗宾斯</a>

    def base_urls(base_url):
    urls = []
    # 这里我们只能前两页做测试,所以range只设置到了50
    # for i in range(0, 275, 25):
    # true_url = base_url.format(i)
    # print(true_url)
    for i in range(0, 50, 25):
    true_url = base_url.format(i)
    print(true_url)
    response = requests.get(true_url, headers=headers)
    if response.status_code == 200:
    # print(response.text)
    pattern1 = re.compile('<div.?class="item">.?<div.?class="pic">.?<a.?href="(.?)">',re.S)
    # 去掉所有换行符,并用正则表达式去匹配每一个页面的具体电影
    url = re.findall(pattern1, response.text)
    # 因为这里是用findall,他返回的是一个列表,如果我们直接append,会导致列表嵌套,故我们这里用个for循环提取出列表的元素再append进去
    for i in url:
    urls.append(i)
    return urls
    def parse_url(urls):
    # 因为只拿前两页做测试,所以range设置到50
    for i in range(0, 50, 1):
    res = requests.get(urls[i], headers = headers_urls)
    print(res)
    if res.status_code == 200:
    soup = BeautifulSoup(res.text, 'lxml')
    # 爬取电影名
    name = (soup.find('span', property="v:itemreviewed"))
    names.append(name.text)
    # print(names)
    # 爬取导演
    director = soup.find('a', rel="v:directedBy")
    directors.append(director.text)
    # print(director.text)
    # 爬取明星
    star_save = []
    for star in soup.find_all('a', rel="v:starring"):
    star_save.append(star.text)
    stars.append(star_save)
    # print(stars)
    # 爬取制片国家
    #<span class="pl">制片国家/地区:</span> 美国

    # 学到的知识点:通过匹配文本内容找下个兄弟节点
    country = soup.find('span', text='制片国家/地区:').next_sibling[1:]
    countrys.append(country)
    # print(countrys)
    # 爬取影片语言
    # <span class="pl">语言:</span>
    language = soup.find('span', text='语言:').next_sibling[1:]
    languages.append(language)
    # print(language)

    print(directors)

    print(true_director)

    print(a)

    if name == 'main':
    base = base_urls(base_url)
    print(base)
    print(len(base))
    parse_url(base)
    print(countrys)
    print(directors)
    print(languages)
    print(names)
    #
    # 最后我们将数据写入到一个excel表格里
    info ={'Filmname':names, 'Directors':directors, 'Country':countrys, 'Languages':languages}
    pdfile = pandas.DataFrame(info)
    # pdlook.to_excel('链家.xlsx', sheet_name="链家二手房广州")
    pdfile.to_excel('DoubanFilm.xlsx', sheet_name="豆瓣电影")
    这次用到的还是requests库,BeautifulSoup解析库,和re进行辅助的正则匹配库,最后老样子利用pandas的DataFrame进行excel的写入。可以添加QQ群1004391443,有飞机大战、颜值打分器、打砖块小游戏、红包提醒神器、小姐姐表白神器等具体的实训项目,有清晰源码,有相应的文件

    注意事项

    相关文章

      网友评论

        本文标题:120行代码爬取豆瓣电影,附源码!就拿刚上映的复联4做例子!

        本文链接:https://www.haomeiwen.com/subject/ookggqtx.html