IDEA创建SparkSQL程序
IDEA中程序的打包和运行方式都和SparkCore类似,Maven依赖中需要添加新的依赖项:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.1</version>
</dependency>
package com.atguigu.sparksql
import org.apache.spark.sql.SparkSession
import org.apache.spark.{SparkConf, SparkContext}
import org.slf4j.LoggerFactory
object HelloWorld {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
//隐士转换
import spark.implicits._
val df = spark.read.json("data/people.json")
// Displays the content of the DataFrame to stdout
df.show()
df.filter($"age" > 21).show()
df.createOrReplaceTempView("persons")
spark.sql("SELECT * FROM persons where age > 21").show()
spark.stop()
}
}
用户自定义函数
用户自定义UDF函数
首先先加载一个表
scala> val df = spark.read.json("examples/src/main/resources/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> df.show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
自定义添加UDF函数,就是在名字前面加上Name
scala> spark.udf.register("addName", (x:String)=> "Name:"+x)
res5: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,StringType,Some(List(StringType)))
scala> df.createOrReplaceTempView("people")
scala> spark.sql("Select addName(name), age from people").show()
+-----------------+----+
|UDF:addName(name)| age|
+-----------------+----+
| Name:Michael|null|
| Name:Andy| 30|
| Name:Justin| 19|
+-----------------+----+
用户自定义聚合函数
强类型的Dataset和弱类型的DataFrame都提供了相关的聚合函数, 如 count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。
弱类型用户自定义聚合函数:通过继承UserDefinedAggregateFunction来实现用户自定义聚合函数。下面展示一个求平均工资的自定义聚合函数。
import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
object MyAverage extends UserDefinedAggregateFunction {
// 聚合函数输入参数的数据类型
def inputSchema: StructType = StructType(StructField("inputColumn", LongType) :: Nil)
// 聚合缓冲区中值得数据类型
def bufferSchema: StructType = {
StructType(StructField("sum", LongType) :: StructField("count", LongType) :: Nil)
}
// 返回值的数据类型
def dataType: DataType = DoubleType
// 对于相同的输入是否一直返回相同的输出。
def deterministic: Boolean = true
// 初始化
def initialize(buffer: MutableAggregationBuffer): Unit = {
// 存工资的总额
buffer(0) = 0L
// 存工资的个数
buffer(1) = 0L
}
// 相同Execute间的数据合并。
def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if (!input.isNullAt(0)) {
buffer(0) = buffer.getLong(0) + input.getLong(0)
buffer(1) = buffer.getLong(1) + 1
}
}
// 不同Execute间的数据合并
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
}
// 计算最终结果
def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}
在spark中调用
// 注册函数
spark.udf.register("myAverage", MyAverage)
val df = spark.read.json("examples/src/main/resources/employees.json")
df.createOrReplaceTempView("employees")
df.show()
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// | Andy| 4500|
// | Justin| 3500|
// | Berta| 4000|
// +-------+------+
val result = spark.sql("SELECT myAverage(salary) as average_salary FROM employees")
result.show()
// +--------------+
// |average_salary|
// +--------------+
// | 3750.0|
// +--------------+
加载保存的方法
JSON文件
如果要让Spark加载Json文件,那么Json文件必须符合每一行都是一个json而不是像平常Json那样多行为一个Json,这点必须要注意。例如
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}
读取Json时,需要隐式导入
// Primitive types (Int, String, etc) and Product types (case classes) encoders are
// supported by importing this when creating a Dataset.
import spark.implicits._
// A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files
val path = "examples/src/main/resources/people.json"
val peopleDF = spark.read.json(path)
// The inferred schema can be visualized using the printSchema() method
peopleDF.printSchema()
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)
// Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")
// SQL statements can be run by using the sql methods provided by spark
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
// +------+
// | name|
// +------+
// |Justin|
// +------+
// Alternatively, a DataFrame can be created for a JSON dataset represented by
// a Dataset[String] storing one JSON object per string
val otherPeopleDataset = spark.createDataset(
"""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val otherPeople = spark.read.json(otherPeopleDataset)
otherPeople.show()
// +---------------+----+
// | address|name|
// +---------------+----+
// |[Columbus,Ohio]| Yin|
Parquet文件
Parquet是一种流行的列式存储格式,可以高效地存储具有嵌套字段的记录。Parquet格式经常在Hadoop生态圈中被使用,它也支持Spark SQL的全部数据类型。Spark SQL 提供了直接读取和存储 Parquet 格式文件的方法。
importing spark.implicits._
import spark.implicits._
val peopleDF = spark.read.json("examples/src/main/resources/people.json")
peopleDF.write.parquet("hdfs://hadoop102:9000/people.parquet")
val parquetFileDF = spark.read.parquet("hdfs:// hadoop102:9000/people.parquet")
parquetFileDF.createOrReplaceTempView("parquetFile")
val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19")
namesDF.map(attributes => "Name: " + attributes(0)).show()
// +------------+
// | value|
// +------------+
// |Name: Justin|
// +------------+
JDBC
Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
注意:*需要将相关的数据库驱动放到spark的类路径下*。
从Mysql数据库加载数据方式一
val jdbcDF = spark.read
.format("jdbc")
.option("url", "jdbc:mysql://hadoop102:3306/rdd")
.option("dbtable", "rddtable")
.option("user", "root")
.option("password", "000000")
.load()
jdbcDF2.write
.jdbc("jdbc:mysql://hadoop102:3306/rdd", "db", connectionProperties)
从Mysql数据库加载数据方式二
val connectionProperties = new Properties()
connectionProperties.put("user", "root")
connectionProperties.put("password", "000000")
val jdbcDF2 = spark.read
.jdbc("jdbc:mysql://hadoop102:3306/rdd", "rddtable", connectionProperties)
将数据写入Mysql方式一
jdbcDF.write
.format("jdbc")
.option("url", "jdbc:mysql://hadoop102:3306/rdd")
.option("dbtable", "dftable")
.option("user", "root")
.option("password", "000000")
.save()
将数据写入Mysql方式二
jdbcDF2.write
.jdbc("jdbc:mysql://hadoop102:3306/rdd", "db", connectionProperties)
Spark 和 Hive
Apache Hive是Hadoop上的SQL引擎,Spark SQL编译时可以包含Hive支持,也可以不包含。包含Hive支持的Spark SQL可以支持Hive表访问、UDF(用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在Spark SQL中包含Hive的库,并不需要事先安装Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。
若要把Spark SQL连接到一个部署好的Hive上,你必须把hive-site.xml复制到 Spark的配置文件目录中($SPARK_HOME/conf)。即使没有部署好Hive,Spark SQL也可以运行。 需要注意的是,如果你没有部署好Hive,Spark SQL会在当前的工作目录中创建出自己的Hive 元数据仓库,叫作 metastore_db。此外,如果你尝试使用 HiveQL 中的 CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。
Hive加载
想连接外部已经部署好的Hive,需要通过以下几个步骤。
-
将Hive中的hive-site.xml拷贝或者软连接到Spark安装目录下的conf目录下
-
打开spark shell,注意带上访问Hive元数据库的JDBC客户端
$ bin/spark-shell --jars mysql-connector-java-5.1.27-bin.jar
-
Spark SQL CLI可以很方便的在本地运行Hive元数据服务以及从命令行执行查询任务。在Spark目录下执行如下命令启动Spark SQL CLI
./bin/spark-sql
代码中使用Hive
添加依赖:
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-hive -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.1.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>1.2.1</version>
</dependency>
创建SparkSession时需要添加hive支持
val warehouseLocation: String = new File("spark-warehouse").getAbsolutePath
val spark = SparkSession
.builder()
.appName("Spark Hive Example")
.config("spark.sql.warehouse.dir", warehouseLocation)
.enableHiveSupport()
.getOrCreate()
网友评论