美文网首页
PAT 1018 Public Bike Management

PAT 1018 Public Bike Management

作者: 烤肉拌饭多加饭 | 来源:发表于2018-05-08 12:37 被阅读0次

    题目理解错了就很难受。
    送回中心(back>=0)和送出中心(need<=0)两个都要计算
    按下图理解


    need=2,back=3

    按我写的那就是back=1;need=0。
    这样对于权重为0的那个点,上面给他3,目标节点p(权重w=8)给它2,然后返回center 1个。也就是对于目标节点p实际上有两个操作,送出和送回;题意应该是目标节点p只有一个操作的(送出或者送回)
    看到还有一个解释:实际测试是只能在去往目的地的途中调整,回来的途上不可调整。
    然后改了代码如下:

    /*1018 Public Bike Management*/
    #include<iostream>
    #include<climits>
    #include<vector>
    #include<iterator>
    using namespace std;
    
    const int N = 510;
    int c,n,p, e;//最大容量c,停车点数量n,有问题停车点下标p,路的数量
    int perfect;
    int *Cap;//现在停车点i的车数
    int num[N] = { 0 };//记录到i有几条最短路径
    int **G;//停车点图
    vector<int> pre[N];//节点i的前驱节点数组
    vector<int> Path, tmpPath;
    int *d = new int[N];
    int MinNeed = N*100,MinBack=N*100;
    
    
    void Dijkstra() {
        int stationN = n + 1;
        int *visit = new int[stationN];
        for (int i = 0; i < stationN; i++) {
            d[i] = INT_MAX;
            visit[i] = 0;
        }
        d[0] = 0;//0永远是起始点
        num[0] = 1;//其余路径数还是0
        int control = 0;
        while (control < stationN) {
            int u = -1;
            int min = INT_MAX;
            //找到未访问过且d[u]最小的顶点
            for (int i = 0; i < n; i++) {
                if (!visit[i] && d[i] < min) {
                    min = d[i];
                    u = i;
                }
            }
            if(u == -1)return;
            visit[u] = 1;//标记访问过
            for (int j = 0; j < stationN; j++) {//从u出发
                if (G[u][j] != 0 && !visit[j]) {//有路
                    if ( d[j] > d[u] + G[u][j]) {
                        num[j] = num[u];
                        d[j] = d[u] + G[u][j];
                        pre[j].clear();
                        pre[j].push_back(u);
                    }
                    else if (d[j] == d[u] + G[u][j]) {
                        pre[j].push_back(u);
                        num[j] = num[j] + num[u];
                    }
                }
            }
            control++;
        }
        
    }
    void DFS(int v) {//DFS输出minBikes最小的路线
        if (v == 0) {//到达中心站
            int need = 0,back=0;
            tmpPath.push_back(v);
            //比较
            int sizeNum = tmpPath.size();//center下标为u=sizeNum-1,tmpPath[u]=0;
            for (int i=sizeNum-2;i>=0; i--) {
                int tmp= Cap[tmpPath[i]] - perfect;//>0送回,<0 need
                if (tmp > 0) {//i要送出去tmp辆车
                    back += tmp;
                }
                else {
                    //tmp<0,i需要-tmp辆车
                    if (back > abs(tmp)) {
                        back += tmp;
                    }
                    else {
                        need = need + abs(tmp)-back;
                        back = 0;
                    }
                }
            }
            if (MinNeed > need) {
                MinNeed = need;
                MinBack = back;
                Path.clear();
                for (int i = 0; i < tmpPath.size(); i++) {
                    Path.push_back(tmpPath[i]);
                }
            }
            else if (MinNeed == need && MinBack > back) {
                MinBack = back;
                Path.clear();
                for (int i = 0; i < tmpPath.size(); i++) {
                    Path.push_back(tmpPath[i]);
                }
            }
            tmpPath.pop_back();
            return;
        }
        else {
            tmpPath.push_back(v);
            for (int i = 0; i <pre[v].size(); i++) {
                DFS(pre[v][i]);
            }
            tmpPath.pop_back();
        }
    }
    
    int main()
    {
        
        cin >> c >> n>> p >> e;
        perfect = c / 2;
        G = (int **)new int*[n+1];//0 center n parking dot
        for (int i = 0; i < n+1; i++) {//初始化图G,有n个城市(顶点)
            G[i] = new int[n+1];
            for (int j = 0; j < n+1; j++) {
                G[i][j] = 0;//表示没路
            }
        }
        Cap = new int[n+1];
        Cap[0] = 0;
        for (int i = 1; i < n + 1; i++) {
            cin >> Cap[i];
        }
        int x, y, t;
        for (int i = 0; i < e; i++) {//初始化路径和消耗权重
            cin >> x >> y >> t;
            G[x][y] = t;
            G[y][x] = t;
        
        }
        Dijkstra();
        DFS(p);
        
        cout << MinNeed << " "<<0;
        for (int i = Path.size()-2; i>=0; i--) {
            cout << "->" << Path[i];
        }
        cout <<" "<<MinBack;
        return 0;
    }
    

    相关文章

      网友评论

          本文标题:PAT 1018 Public Bike Management

          本文链接:https://www.haomeiwen.com/subject/otyirftx.html