美文网首页Java拾遗
Java拾遗:003 - ConcurrentHashMap源码

Java拾遗:003 - ConcurrentHashMap源码

作者: ed72fd6aaa3c | 来源:发表于2018-08-03 16:39 被阅读16次

    JDK1.7 ConcurrentHashMap实现原理浅析

    在多线程场景下使用HashMap会造成死循环,CPU100%等问题,所以我们不能在多线程场景下使用HashMap,另外一个集合类HashTable是线程安全的,但其使用synchronized这种粗粒度的锁来实现的,所以并发场景下性能低下,在多线程(并发)场景下我们推荐使用ConcurrentHashMap类。
    这里放一张ConcurrentHashMap的类图:

    ConcurrentHashMap.png
    可以看出该类也实现了Map接口,所以通常可以直接替换HashMap使用而不用修改业务代码。

    HashTable之所以性能低下,原因是多线程竞争同一把锁(HashTable粗暴的为整个存储结构加了锁),而ConcurrentHashMap则改进这了一点。该类通过分段加锁来降低资源竞争,底层的存储数组结构不再像HashMap一样直接是一个哈希表(数组),而是使用Segment数组来实现分片,Segment类继承了ReentrantLock类,所以它本身也是一个可重入锁,每个Segment则相当于一个HashMap,同样使用哈希表存储数据,每个Bucket都是一个链表,其内部实现思想与HashMap基本一致,不同的是put、remove等方法都是加了锁的。这样分段加锁的好处是,如果两个线程操作的不是同一个Segment,则相互不影响,不用相互等待,从而提升了性能。

    Segment数组本身是不加锁的,那么在向ConcurrentHashMap中添加元素时,会根据键计算出的HashCode来定位Segment,这个过程因为不涉及修改操作,所以不需要加锁。而针对特定的Segment内部数据进行操作,则需要加锁,下面以JDK1.7版ConcurrentHashMap源码为例进行解读。

    JDK1.7 ConcurrentHashMap源码解读

    ConcurrentHashMap底层实现涉及多个内部类,这里简述一下

    • HashEntry类
        static final class HashEntry<K,V> {
            final int hash;
            final K key;
            volatile V value;
            volatile HashEntry<K,V> next;
            // ... ...
        }
    
    • Segment类(这里删除了代码细节和注释)
        static final class Segment<K,V> extends ReentrantLock implements Serializable {
    
            static final int MAX_SCAN_RETRIES =
                Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
            transient volatile HashEntry<K,V>[] table;
            transient int count;
            transient int modCount;
            transient int threshold;
            final float loadFactor;
    
            Segment(float lf, int threshold, HashEntry<K,V>[] tab) {}
    
            final V put(K key, int hash, V value, boolean onlyIfAbsent) {}
    
            @SuppressWarnings("unchecked")
            private void rehash(HashEntry<K,V> node) {}
    
            private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {}
    
            private void scanAndLock(Object key, int hash) {}
    
            final V remove(Object key, int hash, Object value) {}
    
            final boolean replace(K key, int hash, V oldValue, V newValue) {}
    
            final V replace(K key, int hash, V value) {}
    
            final void clear() {}
        }
    

    ConcurrentHashMap中分段是由Segment数组实现的,而每个Segment的内部存储结构为哈希表(数组),而每个Bucket则是由HashEntry构成的链表组成(这点与HashMap是一样的)。

    下面通过ConcurrentHashMap中的几个主要方法来解读

    构造方法
        public ConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
            if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
                throw new IllegalArgumentException();
            if (concurrencyLevel > MAX_SEGMENTS)
                concurrencyLevel = MAX_SEGMENTS;
            // Find power-of-two sizes best matching arguments
            int sshift = 0;
            int ssize = 1;
            // 找到刚好比 concurrencyLevel 大或相等的2的整数次幂
            while (ssize < concurrencyLevel) {
                ++sshift;
                ssize <<= 1;
            }
            this.segmentShift = 32 - sshift;
            this.segmentMask = ssize - 1;
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            int c = initialCapacity / ssize;
            if (c * ssize < initialCapacity)
                ++c;
            // 计算每段容量(取刚好大于等于c的2的整数次幂)
            int cap = MIN_SEGMENT_TABLE_CAPACITY;
            while (cap < c)
                cap <<= 1;
            // create segments and segments[0]
            Segment<K,V> s0 =
                new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                                 (HashEntry<K,V>[])new HashEntry[cap]);
            Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
            UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
            this.segments = ss;
        }
    

    与HashMap不同该类的构造方法多了一个concurrencyLevel参数,该参数主要用于控制分段数,该类的其它构造方法都脱胎与该方法,这里不再赘述,其中无参构造方法中的参数默认值分别是:initialCapacity=16loadFactor=0.75fconcurrencyLevel=16
    构造方法中分别初始化了:分段数、每段容器大小、Segment数组和第一个Segment节点。

    isEmpty和size方法
        public boolean isEmpty() {
            long sum = 0L;
            final Segment<K,V>[] segments = this.segments;
            for (int j = 0; j < segments.length; ++j) {
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) {
                    if (seg.count != 0)
                        return false;
                    sum += seg.modCount;
                }
            }
            if (sum != 0L) { // recheck unless no modifications
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        if (seg.count != 0)
                            return false;
                        sum -= seg.modCount;
                    }
                }
                if (sum != 0L)
                    return false;
            }
            return true;
        }
    
        public int size() {
            // Try a few times to get accurate count. On failure due to
            // continuous async changes in table, resort to locking.
            final Segment<K,V>[] segments = this.segments;
            int size;
            boolean overflow; // true if size overflows 32 bits
            long sum;         // sum of modCounts
            long last = 0L;   // previous sum
            int retries = -1; // first iteration isn't retry
            try {
                for (;;) {
                    if (retries++ == RETRIES_BEFORE_LOCK) {
                        for (int j = 0; j < segments.length; ++j)
                            ensureSegment(j).lock(); // force creation
                    }
                    sum = 0L;
                    size = 0;
                    overflow = false;
                    for (int j = 0; j < segments.length; ++j) {
                        Segment<K,V> seg = segmentAt(segments, j);
                        if (seg != null) {
                            sum += seg.modCount;
                            int c = seg.count;
                            if (c < 0 || (size += c) < 0)
                                overflow = true;
                        }
                    }
                    if (sum == last)
                        break;
                    last = sum;
                }
            } finally {
                if (retries > RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        segmentAt(segments, j).unlock();
                }
            }
            return overflow ? Integer.MAX_VALUE : size;
        }
    

    两个实现方法的思路相同,都是遍历全部Segment,再计算每个Segment内部元素个数。需要注意的是为了防止在方法执行过程中,Segment本身会发生变化(如:添加、删除元素等),但遍历过程中对Segment加锁,方法执行结束后释放锁,所以这两个方法的性能不如HashMap的高(应用场景不同,本身也没什么可比性)。

    put、putIfAbsent方法
        public V put(K key, V value) {
            Segment<K,V> s;
            if (value == null)
                throw new NullPointerException();
            int hash = hash(key);
            int j = (hash >>> segmentShift) & segmentMask;
            if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
                 (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
                s = ensureSegment(j);
            return s.put(key, hash, value, false);
        }
    
        public V putIfAbsent(K key, V value) {
            Segment<K,V> s;
            if (value == null)
                throw new NullPointerException();
            int hash = hash(key);
            int j = (hash >>> segmentShift) & segmentMask;
            if ((s = (Segment<K,V>)UNSAFE.getObject
                 (segments, (j << SSHIFT) + SBASE)) == null)
                s = ensureSegment(j);
            return s.put(key, hash, value, true);
        }
    
        static final class Segment<K,V> extends ReentrantLock implements Serializable {
            final V put(K key, int hash, V value, boolean onlyIfAbsent) {
                HashEntry<K,V> node = tryLock() ? null :
                    scanAndLockForPut(key, hash, value);
                V oldValue;
                try {
                    HashEntry<K,V>[] tab = table;
                    int index = (tab.length - 1) & hash;
                    HashEntry<K,V> first = entryAt(tab, index);
                    for (HashEntry<K,V> e = first;;) {
                        if (e != null) {
                            K k;
                            if ((k = e.key) == key ||
                                (e.hash == hash && key.equals(k))) {
                                oldValue = e.value;
                                if (!onlyIfAbsent) {
                                    e.value = value;
                                    ++modCount;
                                }
                                break;
                            }
                            e = e.next;
                        }
                        else {
                            if (node != null)
                                node.setNext(first);
                            else
                                node = new HashEntry<K,V>(hash, key, value, first);
                            int c = count + 1;
                            if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                                rehash(node);
                            else
                                setEntryAt(tab, index, node);
                            ++modCount;
                            count = c;
                            oldValue = null;
                            break;
                        }
                    }
                } finally {
                    unlock();
                }
                return oldValue;
            }
      }
    

    put方法的逻辑比较深,但有HashMap的源码基础的话,其实也不复杂。在ConcurrentHashMap中的put方法实际上只是根据HashCode找到对应的Segment,这个过程不需要加锁,而实际put动作是由Segment类中的put方法完成的。
    该方法相比HashMap中的put方法,只是增加了锁的机制(毕竟是面向多线程场景)。

    containsKey、containsValue、contains方法
        public boolean containsKey(Object key) {
            Segment<K,V> s; // same as get() except no need for volatile value read
            HashEntry<K,V>[] tab;
            int h = hash(key);
            long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
            if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
                (tab = s.table) != null) {
                for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                         (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                     e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                        return true;
                }
            }
            return false;
        }
    

    只是简单的查找,与size不同的是,不需要加锁(确实也没有加锁的必要,如果元素存在则不再添加,可以使用putIfAbsent方法)。

    get方法
        public V get(Object key) {
            Segment<K,V> s; // manually integrate access methods to reduce overhead
            HashEntry<K,V>[] tab;
            int h = hash(key);
            long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
            if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
                (tab = s.table) != null) {
                for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                         (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                     e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                        return e.value;
                }
            }
            return null;
        }
    
    remove方法
        public V remove(Object key) {
            int hash = hash(key);
            Segment<K,V> s = segmentForHash(hash);
            return s == null ? null : s.remove(key, hash, null);
        }
    
        static final class Segment<K,V> extends ReentrantLock implements Serializable {
            final V remove(Object key, int hash, Object value) {
                if (!tryLock())
                    scanAndLock(key, hash);
                V oldValue = null;
                try {
                    HashEntry<K,V>[] tab = table;
                    int index = (tab.length - 1) & hash;
                    HashEntry<K,V> e = entryAt(tab, index);
                    HashEntry<K,V> pred = null;
                    while (e != null) {
                        K k;
                        HashEntry<K,V> next = e.next;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            V v = e.value;
                            if (value == null || value == v || value.equals(v)) {
                                if (pred == null)
                                    setEntryAt(tab, index, next);
                                else
                                    pred.setNext(next);
                                ++modCount;
                                --count;
                                oldValue = v;
                            }
                            break;
                        }
                        pred = e;
                        e = next;
                    }
                } finally {
                    unlock();
                }
                return oldValue;
            }
        }
    

    结语

    偷懒了,偷懒了,最近天天看源码,看得头大,这篇就到这里了(草草结束),主要是理解实现原理,后面再完善细节吧。

    相关文章

      网友评论

        本文标题:Java拾遗:003 - ConcurrentHashMap源码

        本文链接:https://www.haomeiwen.com/subject/ovayvftx.html