关于mio
mio是rust实现的一个轻量级的I/O库。其实现基本上就是对不同操作系统底层相关API的封装,抽象出统一的接口供上层使用。Linux下为epoll,Windows下为IOCP,OS X下为kqueue。
重要特性
- 非阻塞TCP,UDP
- I/O事件通知epoll,kqeue,IOCP实现
- 运行时零分配
- 平台可扩展
用法
其使用方法与Linux中epoll差不多,mio底层封装了epoll,使用步骤思路:
- 创建Poll
- 注册事件
- 事件循环等待与处理事件
Poll定义如下:
pub struct Poll {
// Platform specific IO selector
selector: sys::Selector, #不同操作系统不同,在Linux下是epoll
// Custom readiness queue
readiness_queue: ReadinessQueue,
// Use an atomic to first check if a full lock will be required. This is a
// fast-path check for single threaded cases avoiding the extra syscall
lock_state: AtomicUsize,
// Sequences concurrent calls to `Poll::poll`
lock: Mutex<()>,
// Wakeup the next waiter
condvar: Condvar,
}
mio提供可跨平台的sytem selector访问,不同平台如下表,都可调用相同的API。不同平台使用的API开销不尽相同。由于mio是基于readiness(就绪状态)的API,与Linux epoll相似,可以看到很多API在Linux上都可以一对一映射。相比之下,Windows IOCP是基于完成(completion-based)而非基于就绪的API,所以两者间会有较多桥接。 同时mio提供自身版本的TcpListener、TcpStream、UdpSocket,这些API封装了底层平台相关API,并设为非阻塞且实现Evented trait。
OS | Selector |
---|---|
Linux | epoll |
OS X, iOS | kqueue |
Windows | IOCP |
FreeBSD | kqueue |
Android | epoll |
mio实现的是一个单线程事件循环,并没有实现线程池及多线程事件循环,如果需要线程池及多线程事件循环等需要自己实现。
mio代码示例
代码示例1:
//! mio demo 1
#[macro_use]
extern crate log;
extern crate simple_logger;
extern crate mio;
use mio::*;
use mio::tcp::{TcpListener, TcpStream};
use std::io::{Read,Write};
fn main() {
simple_logger::init().unwrap();
// Setup some tokens to allow us to identify which event is for which socket.
const SERVER: Token = Token(0);
const CLIENT: Token = Token(1);
let addr = "127.0.0.1:12345".parse().unwrap();
// Setup the server socket
let server = TcpListener::bind(&addr).unwrap();
// Create a poll instance
let poll = Poll::new().unwrap();
// Start listening for incoming connections
poll.register(&server, SERVER, Ready::readable(), PollOpt::edge()).unwrap();
// Setup the client socket
let sock = TcpStream::connect(&addr).unwrap();
// Register the socket
poll.register(&sock, CLIENT, Ready::readable(), PollOpt::edge()).unwrap();
// Create storage for events
let mut events = Events::with_capacity(1024);
loop {
poll.poll(&mut events, None).unwrap();
for event in events.iter() {
match event.token() {
SERVER => {
// Accept and drop the socket immediately, this will close
// the socket and notify the client of the EOF.
let (stream,addr) = server.accept().unwrap();
info!("Listener accept {:?}",addr);
},
CLIENT => {
// The server just shuts down the socket, let's just exit
// from our event loop.
info!("client response.");
return;
},
_ => unreachable!(),
}
}
}
}
代码示例2:
//! mio demo 2
#[macro_use]
extern crate log;
extern crate simple_logger;
extern crate mio;
use mio::*;
use mio::timer::{Timeout};
use mio::deprecated::{EventLoop, Handler, Sender, EventLoopBuilder};
use std::thread;
use std::time::Duration;
fn main() {
simple_logger::init().unwrap();
let mut event_loop=EventLoop::new().unwrap();
let channel_sender=event_loop.channel();
thread::spawn(move ||{
channel_sender.send(IoMessage::Notify);
thread::sleep_ms(5*1000);
channel_sender.send(IoMessage::End);
});
let timeout = event_loop.timeout(Token(123), Duration::from_millis(3000)).unwrap();
let mut handler=MioHandler::new();
let _ = event_loop.run(&mut handler).unwrap();
}
pub enum IoMessage{
Notify,
End,
}
pub struct MioHandler{
}
impl MioHandler{
pub fn new()->Self{
MioHandler{}
}
}
impl Handler for MioHandler {
type Timeout = Token;
type Message = IoMessage;
/// Invoked when the socket represented by `token` is ready to be operated on.
fn ready(&mut self, event_loop: &mut EventLoop<Self>, token: Token, events: Ready) {
}
/// Invoked when a message has been received via the event loop's channel.
fn notify(&mut self, event_loop: &mut EventLoop<Self>, msg: Self::Message) {
match msg {
IoMessage::Notify=>info!("channel notify"),
IoMessage::End=>{
info!("shutdown eventloop.");
event_loop.shutdown();
}
}
}
/// Invoked when a timeout has completed.
fn timeout(&mut self, event_loop: &mut EventLoop<Self>, timeout: Self::Timeout) {
match timeout{
Token(123)=>info!("time out."),
Token(_)=>{},
}
}
/// Invoked when `EventLoop` has been interrupted by a signal interrupt.
fn interrupted(&mut self, event_loop: &mut EventLoop<Self>) {
}
/// Invoked at the end of an event loop tick.
fn tick(&mut self, event_loop: &mut EventLoop<Self>) {
}
}
这个示例演示了超时及channel,围绕EventLoop编程,其实与上一个例子没有什么不同,只是EventLoop对Poll做了封装。EventLoop定义如下:
// Single threaded IO event loop.
pub struct EventLoop<H: Handler> {
run: bool,
poll: Poll, #可以看到EventLoop内部Poll字段
events: Events,
timer: Timer<H::Timeout>,
notify_tx: channel::SyncSender<H::Message>,
notify_rx: channel::Receiver<H::Message>,
config: Config,
}
源码简析
对涉及操作系统部分代码,以Linux操作系统为例。在Linux操作系统中,mio封装了epoll。后面会给出相应的代码。
结合前面的代码示例给出相应的关键代码如下:
// Single threaded IO event loop.
pub struct EventLoop<H: Handler> {
run: bool,
poll: Poll,
events: Events,
timer: Timer<H::Timeout>,
notify_tx: channel::SyncSender<H::Message>,
notify_rx: channel::Receiver<H::Message>,
config: Config,
}
pub trait Handler: Sized {
type Timeout;
type Message;
/// Invoked when the socket represented by `token` is ready to be operated
/// on. `events` indicates the specific operations that are
/// ready to be performed.
///
/// For example, when a TCP socket is ready to be read from, `events` will
/// have `readable` set. When the socket is ready to be written to,
/// `events` will have `writable` set.
///
/// This function will only be invoked a single time per socket per event
/// loop tick.
fn ready(&mut self, event_loop: &mut EventLoop<Self>, token: Token, events: Ready) {
}
/// Invoked when a message has been received via the event loop's channel.
fn notify(&mut self, event_loop: &mut EventLoop<Self>, msg: Self::Message) {
}
/// Invoked when a timeout has completed.
fn timeout(&mut self, event_loop: &mut EventLoop<Self>, timeout: Self::Timeout) {
}
/// Invoked when `EventLoop` has been interrupted by a signal interrupt.
fn interrupted(&mut self, event_loop: &mut EventLoop<Self>) {
}
/// Invoked at the end of an event loop tick.
fn tick(&mut self, event_loop: &mut EventLoop<Self>) {
}
}
impl<H: Handler> EventLoop<H> {
/// Constructs a new `EventLoop` using the default configuration values.
/// The `EventLoop` will not be running.
pub fn new() -> io::Result<EventLoop<H>> {
EventLoop::configured(Config::default())
}
fn configured(config: Config) -> io::Result<EventLoop<H>> {
// Create the IO poller
let poll = Poll::new()?;
let timer = timer::Builder::default()
.tick_duration(config.timer_tick)
.num_slots(config.timer_wheel_size)
.capacity(config.timer_capacity)
.build();
// Create cross thread notification queue
let (tx, rx) = channel::sync_channel(config.notify_capacity); //这里创建的是同步管道,可配置同步管道内部的buffer queue bound size.
// Register the notification wakeup FD with the IO poller
poll.register(&rx, NOTIFY, Ready::readable(), PollOpt::edge() | PollOpt::oneshot())?;
poll.register(&timer, TIMER, Ready::readable(), PollOpt::edge())?;
Ok(EventLoop {
run: true,
poll: poll,
timer: timer,
notify_tx: tx,
notify_rx: rx,
config: config,
events: Events::with_capacity(1024),
})
}
/// Returns a sender that allows sending messages to the event loop in a
/// thread-safe way, waking up the event loop if needed.
/// Each [EventLoop](#) contains a lock-free queue with a pre-allocated
/// buffer size. The size can be changed by modifying
/// [EventLoopConfig.notify_capacity](struct.EventLoopConfig.html#method.notify_capacity).
/// When a message is sent to the EventLoop, it is first pushed on to the
/// queue. Then, if the EventLoop is currently running, an atomic flag is
/// set to indicate that the next loop iteration should be started without
/// waiting.
///
/// If the loop is blocked waiting for IO events, then it is woken up. The
/// strategy for waking up the event loop is platform dependent. For
/// example, on a modern Linux OS, eventfd is used. On older OSes, a pipe
/// is used.
///
/// The strategy of setting an atomic flag if the event loop is not already
/// sleeping allows avoiding an expensive wakeup operation if at all possible.
pub fn channel(&self) -> Sender<H::Message> {
Sender::new(self.notify_tx.clone())
}
/// Schedules a timeout after the requested time interval. When the
/// duration has been reached,
/// [Handler::timeout](trait.Handler.html#method.timeout) will be invoked
/// passing in the supplied token.
///
/// Returns a handle to the timeout that can be used to cancel the timeout
/// using [#clear_timeout](#method.clear_timeout).
pub fn timeout(&mut self, token: H::Timeout, delay: Duration) -> timer::Result<Timeout> {
self.timer.set_timeout(delay, token)
}
/// If the supplied timeout has not been triggered, cancel it such that it
/// will not be triggered in the future.
pub fn clear_timeout(&mut self, timeout: &Timeout) -> bool {
self.timer.cancel_timeout(&timeout).is_some()
}
/// Tells the event loop to exit after it is done handling all events in the current iteration.
pub fn shutdown(&mut self) {
self.run = false;
}
/// Indicates whether the event loop is currently running. If it's not it has either
/// stopped or is scheduled to stop on the next tick.
pub fn is_running(&self) -> bool {
self.run
}
/// Registers an IO handle with the event loop.
pub fn register<E: ?Sized>(&mut self, io: &E, token: Token, interest: Ready, opt: PollOpt) -> io::Result<()>
where E: Evented
{
self.poll.register(io, token, interest, opt)
}
/// Re-Registers an IO handle with the event loop.
pub fn reregister<E: ?Sized>(&mut self, io: &E, token: Token, interest: Ready, opt: PollOpt) -> io::Result<()>
where E: Evented
{
self.poll.reregister(io, token, interest, opt)
}
/// Keep spinning the event loop indefinitely, and notify the handler whenever
/// any of the registered handles are ready.
pub fn run(&mut self, handler: &mut H) -> io::Result<()> {
self.run = true;
while self.run {
// Execute ticks as long as the event loop is running
self.run_once(handler, None)?;
}
Ok(())
}
/// Deregisters an IO handle with the event loop.
///
/// Both kqueue and epoll will automatically clear any pending events when closing a
/// file descriptor (socket). In that case, this method does not need to be called
/// prior to dropping a connection from the slab.
///
/// Warning: kqueue effectively builds in deregister when using edge-triggered mode with
/// oneshot. Calling `deregister()` on the socket will cause a TcpStream error.
pub fn deregister<E: ?Sized>(&mut self, io: &E) -> io::Result<()> where E: Evented {
self.poll.deregister(io)
}
/// Spin the event loop once, with a given timeout (forever if `None`),
/// and notify the handler if any of the registered handles become ready
/// during that time.
pub fn run_once(&mut self, handler: &mut H, timeout: Option<Duration>) -> io::Result<()> {
trace!("event loop tick");
// Check the registered IO handles for any new events. Each poll
// is for one second, so a shutdown request can last as long as
// one second before it takes effect.
let events = match self.io_poll(timeout) {
Ok(e) => e,
Err(err) => {
if err.kind() == io::ErrorKind::Interrupted {
handler.interrupted(self);
0
} else {
return Err(err);
}
}
};
self.io_process(handler, events);
handler.tick(self);
Ok(())
}
#[inline]
fn io_poll(&mut self, timeout: Option<Duration>) -> io::Result<usize> {
self.poll.poll(&mut self.events, timeout)
}
// Process IO events that have been previously polled
fn io_process(&mut self, handler: &mut H, cnt: usize) {
let mut i = 0;
trace!("io_process(..); cnt={}; len={}", cnt, self.events.len());
// Iterate over the notifications. Each event provides the token
// it was registered with (which usually represents, at least, the
// handle that the event is about) as well as information about
// what kind of event occurred (readable, writable, signal, etc.)
while i < cnt {
let evt = self.events.get(i).unwrap();
trace!("event={:?}; idx={:?}", evt, i);
match evt.token() {
NOTIFY => self.notify(handler),
TIMER => self.timer_process(handler),
_ => self.io_event(handler, evt)
}
i += 1;
}
}
fn io_event(&mut self, handler: &mut H, evt: Event) {
handler.ready(self, evt.token(), evt.readiness());
}
fn notify(&mut self, handler: &mut H) {
for _ in 0..self.config.messages_per_tick {
match self.notify_rx.try_recv() {
Ok(msg) => handler.notify(self, msg),
_ => break,
}
}
// Re-register
let _ = self.poll.reregister(&self.notify_rx, NOTIFY, Ready::readable(), PollOpt::edge() | PollOpt::oneshot());
}
fn timer_process(&mut self, handler: &mut H) {
while let Some(t) = self.timer.poll() {
handler.timeout(self, t);
}
}
}
pub struct Poll {
// Platform specific IO selector
selector: sys::Selector,
// Custom readiness queue
readiness_queue: ReadinessQueue,
// Use an atomic to first check if a full lock will be required. This is a
// fast-path check for single threaded cases avoiding the extra syscall
lock_state: AtomicUsize,
// Sequences concurrent calls to `Poll::poll`
lock: Mutex<()>,
// Wakeup the next waiter
condvar: Condvar,
}
pub struct Selector {
id: usize,
epfd: RawFd,
}
impl Selector {
pub fn new() -> io::Result<Selector> {
let epfd = unsafe {
// Emulate `epoll_create` by using `epoll_create1` if it's available
// and otherwise falling back to `epoll_create` followed by a call to
// set the CLOEXEC flag.
dlsym!(fn epoll_create1(c_int) -> c_int);
match epoll_create1.get() {
Some(epoll_create1_fn) => {
cvt(epoll_create1_fn(libc::EPOLL_CLOEXEC))?
}
None => {
let fd = cvt(libc::epoll_create(1024))?;
drop(set_cloexec(fd));
fd
}
}
};
// offset by 1 to avoid choosing 0 as the id of a selector
let id = NEXT_ID.fetch_add(1, Ordering::Relaxed) + 1;
Ok(Selector {
id: id,
epfd: epfd,
})
}
pub fn id(&self) -> usize {
self.id
}
/// Wait for events from the OS
pub fn select(&self, evts: &mut Events, awakener: Token, timeout: Option<Duration>) -> io::Result<bool> {
let timeout_ms = timeout
.map(|to| cmp::min(millis(to), i32::MAX as u64) as i32)
.unwrap_or(-1);
// Wait for epoll events for at most timeout_ms milliseconds
evts.clear();
unsafe {
let cnt = cvt(libc::epoll_wait(self.epfd,
evts.events.as_mut_ptr(),
evts.events.capacity() as i32,
timeout_ms))?;
let cnt = cnt as usize;
evts.events.set_len(cnt);
for i in 0..cnt {
if evts.events[i].u64 as usize == awakener.into() {
evts.events.remove(i);
return Ok(true);
}
}
}
Ok(false)
}
/// Register event interests for the given IO handle with the OS
pub fn register(&self, fd: RawFd, token: Token, interests: Ready, opts: PollOpt) -> io::Result<()> {
let mut info = libc::epoll_event {
events: ioevent_to_epoll(interests, opts),
u64: usize::from(token) as u64
};
unsafe {
cvt(libc::epoll_ctl(self.epfd, libc::EPOLL_CTL_ADD, fd, &mut info))?;
Ok(())
}
}
/// Register event interests for the given IO handle with the OS
pub fn reregister(&self, fd: RawFd, token: Token, interests: Ready, opts: PollOpt) -> io::Result<()> {
let mut info = libc::epoll_event {
events: ioevent_to_epoll(interests, opts),
u64: usize::from(token) as u64
};
unsafe {
cvt(libc::epoll_ctl(self.epfd, libc::EPOLL_CTL_MOD, fd, &mut info))?;
Ok(())
}
}
/// Deregister event interests for the given IO handle with the OS
pub fn deregister(&self, fd: RawFd) -> io::Result<()> {
// The &info argument should be ignored by the system,
// but linux < 2.6.9 required it to be not null.
// For compatibility, we provide a dummy EpollEvent.
let mut info = libc::epoll_event {
events: 0,
u64: 0,
};
unsafe {
cvt(libc::epoll_ctl(self.epfd, libc::EPOLL_CTL_DEL, fd, &mut info))?;
Ok(())
}
}
}
参考:
【譯】Tokio 內部機制:從頭理解 Rust 非同步 I/O 框架
网友评论