美文网首页
tensorflow入门,实现logistic回归训练minis

tensorflow入门,实现logistic回归训练minis

作者: FeynmanZhang | 来源:发表于2018-09-06 23:16 被阅读0次

    思路比较简单,直接结合着注释看代码!

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    #导入mnist数据
    mnist = input_data.read_data_sets("../data/mnsit", one_hot=True)
    # Parameters设置参数,进行批梯度下降
    learning_rate = 0.01
    training_epochs = 25
    batch_size = 100
    display_step = 1
    # tf Graph Input
    x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784
    y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes
    # Set model weights 
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    # Construct model 利用参数创建预测模型
    pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
    entropy = tf.nn.softmax_cross_entropy_with_logits(labels = y, logits = pred)
    cost = tf.reduce_mean(entropy)
    # Gradient Descent
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)#cost 可以看做是损失函数
    # Initializing the variables
    init = tf.global_variables_initializer()
    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
        # Training cycle
        for epoch in range(training_epochs):
            avg_cost = 0. #float
            total_batch = int(mnist.train.num_examples/batch_size)
            # Loop over all batches
            for i in range(total_batch):
                #分批次获得数据
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                # Run optimization op (backprop) and cost op (to get loss value) # 这里返回一个[optimizer,cost]的list, 其中 _代表optimizer,cost代表bath cost的值
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,  
                                                              y: batch_ys})
                # Compute average loss
                avg_cost += c / total_batch
            # Display logs per epoch step
            if (epoch+1) % display_step == 0:
                print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
    
        print("Optimization Finished!")
    
        # Test model 得到模型的准确性
        correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
        # Calculate accuracy correct_prediction本来是bool型的tensor,Tensor("Equal_6:0", shape=(?,), dtype=bool) 将correct_prediction转换成浮点型
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
    
    

    相关文章

      网友评论

          本文标题:tensorflow入门,实现logistic回归训练minis

          本文链接:https://www.haomeiwen.com/subject/oyafgftx.html