美文网首页
2019-08-24-多维朴素贝叶斯sample

2019-08-24-多维朴素贝叶斯sample

作者: 方寸之间1510 | 来源:发表于2019-08-24 17:31 被阅读0次

    给定数据如下:

    现在给我们的问题是,如果一对男女朋友,男生想女生求婚,男生的四个特点分别是不帅,性格不好,身高矮,不上进,请你判断一下女生是嫁还是不嫁?

    这是一个典型的分类问题,转为数学问题就是比较p(嫁|(不帅、性格不好、身高矮、不上进))与p(不嫁|(不帅、性格不好、身高矮、不上进))的概率,谁的概率大,我就能给出嫁或者不嫁的答案!

    这里我们联系到朴素贝叶斯公式:

    我们需要求p(嫁|(不帅、性格不好、身高矮、不上进),这是我们不知道的,但是通过朴素贝叶斯公式可以转化为好求的三个量.

    p(不帅、性格不好、身高矮、不上进|嫁)、p(不帅、性格不好、身高矮、不上进)、p(嫁)(至于为什么能求,后面会讲,那么就太好了,将待求的量转化为其它可求的值,这就相当于解决了我们的问题!

    朴素贝叶斯算法的朴素一词解释

    那么这三个量是如何求得?

    是根据已知训练数据统计得来,下面详细给出该例子的求解过程。

    回忆一下我们要求的公式如下:

    那么我只要求得p(不帅、性格不好、身高矮、不上进|嫁)、p(不帅、性格不好、身高矮、不上进)、p(嫁)即可,好的,下面我分别求出这几个概率,最后一比,就得到最终结果。

    p(不帅、性格不好、身高矮、不上进|嫁) = p(不帅|嫁)*p(性格不好|嫁)*p(身高矮|嫁)*p(不上进|嫁),那么我就要分别统计后面几个概率,也就得到了左边的概率!

    等等,为什么这个成立呢?学过概率论的同学可能有感觉了,这个等式成立的条件需要特征之间相互独立吧!

    对的!这也就是为什么朴素贝叶斯分类有朴素一词的来源,朴素贝叶斯算法是假设各个特征之间相互独立,那么这个等式就成立了!

    但是为什么需要假设特征之间相互独立呢?

    1、我们这么想,假如没有这个假设,那么我们对右边这些概率的估计其实是不可做的,这么说,我们这个例子有4个特征,其中帅包括{帅,不帅},性格包括{不好,好,爆好},身高包括{高,矮,中},上进包括{不上进,上进},那么四个特征的联合概率分布总共是4维空间,总个数为2*3*3*2=36个。

    36个,计算机扫描统计还可以,但是现实生活中,往往有非常多的特征,每一个特征的取值也是非常之多,那么通过统计来估计后面概率的值,变得几乎不可做,这也是为什么需要假设特征之间独立的原因。

    2、假如我们没有假设特征之间相互独立,那么我们统计的时候,就需要在整个特征空间中去找,比如统计p(不帅、性格不好、身高矮、不上进|嫁),

    我们就需要在嫁的条件下,去找四种特征全满足分别是不帅,性格不好,身高矮,不上进的人的个数,这样的话,由于数据的稀疏性,很容易统计到0的情况。 这样是不合适的。

    根据上面俩个原因,朴素贝叶斯法对条件概率分布做了条件独立性的假设,由于这是一个较强的假设,朴素贝叶斯也由此得名!这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率。

    好的,上面我解释了为什么可以拆成分开连乘形式。那么下面我们就开始求解!

    我们将上面公式整理一下如下:

    下面我将一个一个的进行统计计算(在数据量很大的时候,根据中心极限定理,频率是等于概率的,这里只是一个例子,所以我就进行统计即可)。

    p(嫁)=?

    首先我们整理训练数据中,嫁的样本数如下:

    则 p(嫁) = 6/12(总样本数) = 1/2

    p(不帅|嫁)=?统计满足样本数如下:

    则p(不帅|嫁) = 3/6 = 1/2 在嫁的条件下,看不帅有多少

    p(性格不好|嫁)= ?统计满足样本数如下:

    则p(性格不好|嫁)= 1/6

    p(矮|嫁) = ?统计满足样本数如下:

    则p(矮|嫁) = 1/6

    p(不上进|嫁) = ?统计满足样本数如下:

    则p(不上进|嫁) = 1/6

    下面开始求分母,p(不帅),p(性格不好),p(矮),p(不上进)

    统计样本如下:

    不帅统计如上红色所示,占4个,那么p(不帅) = 4/12 = 1/3

    性格不好统计如上红色所示,占4个,那么p(性格不好) = 4/12 = 1/3

    身高矮统计如上红色所示,占7个,那么p(身高矮) = 7/12

    不上进统计如上红色所示,占4个,那么p(不上进) = 4/12 = 1/3

    到这里,要求p(不帅、性格不好、身高矮、不上进|嫁)的所需项全部求出来了,下面我带入进去即可,

    = (1/2*1/6*1/6*1/6*1/2)/(1/3*1/3*7/12*1/3)

    下面我们根据同样的方法来求p(不嫁|不帅,性格不好,身高矮,不上进),完全一样的做法,为了方便理解,我这里也走一遍帮助理解。首先公式如下:

    下面我也一个一个来进行统计计算,这里与上面公式中,分母是一样的,于是我们分母不需要重新统计计算!

    p(不嫁)=?根据统计计算如下(红色为满足条件):

    则p(不嫁)=6/12 = 1/2

    p(不帅|不嫁) = ?统计满足条件的样本如下(红色为满足条件):

    则p(不帅|不嫁) = 1/6

    p(性格不好|不嫁) = ?据统计计算如下(红色为满足条件):

    则p(性格不好|不嫁) =3/6 = 1/2

    p(矮|不嫁) = ?据统计计算如下(红色为满足条件):

    则p(矮|不嫁) = 6/6 = 1

    p(不上进|不嫁) = ?据统计计算如下(红色为满足条件):

    则p(不上进|不嫁) = 3/6 = 1/2

    那么根据公式:

    p (不嫁|不帅、性格不好、身高矮、不上进) = ((1/6*1/2*1*1/2)*1/2)/(1/3*1/3*7/12*1/3)

    很显然(1/6*1/2*1*1/2) > (1/2*1/6*1/6*1/6*1/2)

    于是有p (不嫁|不帅、性格不好、身高矮、不上进)>p (嫁|不帅、性格不好、身高矮、不上进)

    所以我们根据朴素贝叶斯算法可以给这个女生答案,是不嫁!!!!

    贝叶斯分类算法的优缺点

    优点:

    1、朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率;

    2、NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单,易于实现;

    缺点:

    1、理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的(可以考虑用聚类算法先将相关性较大的属性聚类),这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好;

    2、需要知道先验概率;

    3、分类决策存在错误率。

    相关文章

      网友评论

          本文标题:2019-08-24-多维朴素贝叶斯sample

          本文链接:https://www.haomeiwen.com/subject/oypqectx.html