美文网首页
torchvision.models.resnet.resnet

torchvision.models.resnet.resnet

作者: blair_liu | 来源:发表于2021-03-12 22:26 被阅读0次

随便一个位置

from torchvision.models.resnet import resnet50

跳转到resnet50

def resnet50(pretrained=False, progress=True, **kwargs):
    """
        :param pretrained: 是否下载预训练权重
        :param progress: 是否显示下载进度条
        :param kwargs: 额外参数
        :return: resnet50模型
    """
    r"""ResNet-50 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    # 调用_resnet
    return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)

_resnet

def _resnet(arch, block, layers, pretrained, progress, **kwargs):
    """
    :param arch: 模型名称 'resnet50'
    :param block: 瓶颈模块Bottleneck
    :param layers: 四个layer各有多少个瓶颈模块 [3, 4, 6, 3]
    :param pretrained: 是否下载预训练权重
    :param progress: 是否显示下载进度条
    :param kwargs: 额外参数
    :return: resnet50模型
    """
    # 调用ResNet类
    model = ResNet(block, layers, **kwargs)
    if pretrained:
        # 下载resnet50预训练权重
        state_dict = load_state_dict_from_url(model_urls[arch],
                                              progress=progress)
        model.load_state_dict(state_dict)
    return model

ResNet类

class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
                 groups=1, width_per_group=64, replace_stride_with_dilation=None,
                 norm_layer=None):
        """
        :param 传入参数 block: Bottleneck
        :param 传入参数 layers:[3, 4, 6, 3]
        :param num_classes: 分类数
        :param zero_init_residual: 零初始化
        :param groups: 分组数(暂时用不上,ResNeXt用)
        :param width_per_group: 每个分组的通道数(暂时用不上,ResNeXt用)
        :param replace_stride_with_dilation: 是否用空洞卷积替代stride(用不上)
        :param norm_layer:BatchNorm
        """
        super(ResNet, self).__init__()
        if norm_layer is None:  # 如果为空,则BatchNorm2d
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64  # Bottleneck输入通道数,后面会变256,512,1024,2048
        self.dilation = 1  # 空洞卷积替代stride才会变,否则固定不变
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        # B*3*224*224->B*64*112*112
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        # B*64*112*112->B*64*56*56
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # B*64*56*56->B*256*56*56 layer1没有下采样
        self.layer1 = self._make_layer(block, 64, layers[0])
        # B*256*56*56->B*512*28*28 Bottleneck第二个卷积步长为2,所以下采样
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
                                       dilate=replace_stride_with_dilation[0])
        # B*512*28*28->B*1024*14*14 Bottleneck第二个卷积步长为2,所以下采样
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                       dilate=replace_stride_with_dilation[1])
        # B*1024*14*14->B*2048*7*7 Bottleneck第二个卷积步长为2,所以下采样
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                       dilate=replace_stride_with_dilation[2])
        # B*2048*7*7->B*2048*1*1
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        # B*2048->B*num_classes
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        """
        :param block: Bottleneck
        :param planes: 通用输出通道数  64 128 256 512 实际上Bottleneck输出通道数要乘以expansion 4
        :param blocks: 3, 4, 6, 3 四个layer各有多少个Bottleneck
        :param stride: 决定Bottleneck是否下采样的步长
        :param dilate: 是否用空洞卷积替代stride(用不上)
        :return: layer
        """
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation  # 1
        if dilate:  # 是否用空洞卷积替代stride(用不上)
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            # 下采样
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []  # 创建空layer
        # 各个layer中只有第一个Bottleneck才用stride下采样
        layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
                            self.base_width, previous_dilation, norm_layer))
        # 更新输入通道
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=self.groups,
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def _forward_impl(self, x):
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x):
        return self._forward_impl(x)

Bottleneck 瓶颈模块

class Bottleneck(nn.Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion = 4
    """
    expansion是Bottleneck相对于BasicBlock输出的倍数
    也是通用输出通道数的倍数
    """

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        """
        :param inplanes: 输入通道数,会不断变化
        :param planes: 通用输出通道数  64 128 256 512 实际上Bottleneck输出通道数要乘以expansion
        :param stride: 步长
        :param downsample: 下采样
        :param groups: 分组卷积 (暂时用不上,ResNeXt用)
                参考:https://zhuanlan.zhihu.com/p/28749411
        :param base_width:width_per_group 每个分组的通道数
        :param dilation: 空洞卷积扩张数,1是不扩张
        :param norm_layer: BatchNorm
        """
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out
pytorch版ResNet

图片原始来自:

https://zhuanlan.zhihu.com/p/353235794

原始图片是论文的版本,即ResNet V1.0,上面图片是我在此基础上修改的pytorch版,即ResNet V1.5,

https://ngc.nvidia.com/catalog/resources/nvidia:resnet_50_v1_5_for_pytorch

加了点东西,我觉得这样可以更好的理解程序
注:
图片右边
C对应程序里inplanes
C1对应程序里planes
\begin{array}{c|c} \hline \text{inplanes} & \text{planes} \\ \hline 64 & 64 \\ 256 & 64 \\ 256 & 64 \\ \hline 256 & 128 \\ 512 & 128 \\ 512 & 128 \\ 512 & 128 \\ \hline 512 & 256 \\ 1024 & 256 \\ 1024 & 256 \\ 1024 & 256 \\ 1024 & 256 \\ 1024 & 256 \\ \hline 1024 & 512 \\ 2048 & 512 \\ 2048 & 512 \\ \hline \end{array}
上面是整个resnet流程inplanes和planes变化
最后resnet家族图:

resnet家族

相关文章

网友评论

      本文标题:torchvision.models.resnet.resnet

      本文链接:https://www.haomeiwen.com/subject/pbioqltx.html