美文网首页
4.5 缺失值,4.6 日期值

4.5 缺失值,4.6 日期值

作者: 灵活胖子的进步之路 | 来源:发表于2021-08-20 21:19 被阅读0次
y <- c(1, 2, 3, NA)
is.na(y)
is.na用以识别是否有缺失值,返回逻辑值
# Recode 99 to missing for the variable age
leadership[age == 99, "age"] <- NA#定义列名称为age的列,此时行值为99的时候为NA
leadership
确实缺失值
# Excluding missing values from analyses
x <- c(1, 2, NA, 3)
y <- x[1] + x[2] + x[3] + x[4]
z <- sum(x)
e <- sum(x, na.rm=TRUE)#删除缺失值后运算才能有结果
y;z;e
运算前必须删除缺失值
leadership
newdata <- na.omit(leadership)
newdata
na.omit删除缺失行
mydates <- as.Date(c("2007-06-22", "2004-02-13"))
str(mydates)

![利用as.Date]函数进行日期格式的转化(https://img.haomeiwen.com/i22546862/ba79a4a4eb5f64f4.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

strDates <- c("01/05/1965", "08/16/1975")
class(strDates)
dates <- as.Date(strDates, format = "%m/%d/%Y")
class(dates)
利用format参数设定个格式
myformat <- "%m/%d/%y" 
str(leadership)
leadership$date <- as.Date(leadership$date, myformat)
str(leadership)

转换成日期格式
today <- Sys.Date()
format(today, format="%B %d %Y")
format(today, format="%A")
format指定和提取日期信息
startdate <- as.Date("2004-02-13")
enddate   <- as.Date("2009-06-22")
enddate - startdate
日期的计算
today <- Sys.Date()
dob <- as.Date("1966-10-12")
difftime(today, dob, units="days")
利用diftime函数计算日期间隔并指定时间单位
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```

相关文章

  • 4.5 缺失值,4.6 日期值

    ![利用as.Date]函数进行日期格式的转化(https://upload-images.jianshu.io/...

  • R语言实战考卷 第四章

    本章要点 R储存缺失值和日期的方式; 处理缺失值和日期的方式 对象的数据类型;转换数据类型;(控制流if-then...

  • 1111总结,missing value,文本操作,datafr

    missing value 缺失值 检测缺失值,丢弃缺失值,填充缺失值,缺失值一般不会被计算 pd.isnull(...

  • 【python】数据清洗

    1.处理缺失值 判断是否含缺失值/统计缺失值 筛选所有含缺失值的表格 删除含缺失值的数据 用新值填充空值 对应值替...

  • Pandas_3 处理缺失值、数据透视表以及apply的用法

    1.处理缺失值 Pandas使用NaN(Not a Number)来表示缺失值 1.1判断是否存在缺失值以及缺失值...

  • 数据的缺失值处理说明

    缺失值说明 缺失值产生的原因 缺失值处理 缺失值说明 缺失数据是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、...

  • 数据挖掘中的预处理

    【数据清洗】Part 1:缺失值处理 忽略元组 人工填写缺失值 使用一个全局常量填充缺失值:例如将缺失值用“Unk...

  • 《机器学习实战》算法总结

    缺失值 使用可用特征的均值来填补缺失值 使用特殊值来填补缺失值,如-1 忽略有缺失值的样本 使用相似样本的均值添补...

  • R语言实战-4基本数据管理

    今晚和很多幸福的人儿打电话,结果就只学了一些。学多少写多少喽~反正开心呢! 4.6日期值 日期值通常是以字符串的形...

  • R数据数据缺失值处理

    处理缺失值的步骤一般为: 识别缺失值 补全个案或删除个案 个案、行都是指代一个意思 识别缺失值 识别缺失值的方法很...

网友评论

      本文标题:4.5 缺失值,4.6 日期值

      本文链接:https://www.haomeiwen.com/subject/pcqxiltx.html